Upgrade to Pro — share decks privately, control downloads, hide ads and more …

卒業研究発表会資料

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 卒業研究発表会資料

Avatar for statictaku

statictaku

May 20, 2023
Tweet

More Decks by statictaku

Other Decks in Research

Transcript

  1. Reformulation of Density-Independent Smoothed Particle Hydrodynamics with Riemann Solver: Godunov

    DISPH ᴷ ৽ SPH εΩʔϜ:Godunov DISPH ๏ʹ͍ͭͯ ᴷ 1 ౬ઙ୓޺ ࢦಋڭһ: 1 ৿ਖ਼෉ ஜ೾େֶ ଔۀݚڀൃදձ, January 31, 2023 ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 1 / 17
  2. ໨࣍ 1 ֤छεΩʔϜʹ͍ͭͯ SPH ๏ Density-Independent SPH ๏, GSPH ๏

    2 Godunov DISPH ๏ಋग़ 3 ςετܭࢉ 2D ੩ਫѹฏߧ ఺ݯരൃ 4 ݁࿦ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 2 / 17
  3. ֤छεΩʔϜʹ͍ͭͯ SPH ๏ SPH ๏ಋग़ʹ༻͍Δѹॖੑඇ೪ੑஅ೤ྲྀମͷӡಈํఔࣜɺΤωϧΪʔํఔࣜ dv(r) dt = − 1

    ρ(r) ∇P(r) + FAV (α) (1) du(r) dt = − P(r) ρ(r) ∇ · v(r) + GAV (α) (2) • σϝϦοτ ▶ ྲྀମͷ઀৮ෆ࿈ଓ໘Λ͏·͘ѻ͑ͣɺඇ෺ཧతͳද໘ுྗ͕ൃੜ. ີ౓ͷۭؒ࿈ଓੑΛԾఆ͠ɺ࿈ଓؔ਺Ͱۙࣅ͍ͯ͠Δ͔Βɻ ▶ িܸ೾Λଊ͑ΔͨΊʹਓ޻తͳࢄҳ߲͕ӡಈํఔࣜɺΤωϧΪʔํఔࣜʹඞཁɻ ਓޱ೪ੑͷڧ͞Λௐઅ͢Δ೚ҙύϥϝʔλ α ΛਓؒͷखͰௐ੔͢Δඞཁ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 3 / 17
  4. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ DISPH ๏ɺGSPH ๏ͱ͸ •

    [Saitoh and Makino, 2013] Ͱ DISPH ๏͕ɺ[Inutsuka, 2002] Ͱ GSPH ๏͕։ൃ͞Εͨɻ DISPH ๏ ઀৮ෆ࿈ଓ໘Ͱ࿈ଓͳѹྗΛ࿈ଓؔ਺Ͱ ۙࣅ (ѹྗͷ࿈ଓੑɺۭؒඍ෼ՄೳੑΛԾ ఆ) ͠ɺྲྀମͷඍ෼ํఔࣜΛղ͍͍ͯΔɻ িܸ೾Λଊ͑ΔͨΊʹɺਓ޻೪ੑύϥ ϝʔλ͕ඞཁɻ GSPH ๏ ཻࢠಉ࢜ͷ૬ޓ࡞༻ͷܭࢉͷࡍɺܭࢉࣜ தͷѹྗͱ଎౓ʹ Riemann solver Λ༻͍ Δɻࠓճ͸ [Cha and Whitworth, 2003] ʹ ΑΔ Case3 ͷ GSPH Λ࢖༻. িܸ೾ͷͨ Ίͷύϥϝʔλઃఆඞཁͳ͠. ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 4 / 17
  5. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ Riemann Solver ʹ͍ͭͯ •

    ॳظ৚݅ W = (ρ, P, v) • ղͷλΠϓ P∗ L = P∗ R , v∗ L = v∗ R ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 5 / 17
  6. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ 2D ѹྗฏߧ ॳظ৚݅ͷ··มಈ͠ͳ͍ͷ͕෺ཧతͳղ ѹྗ͸શྖҬͰҰఆɹ

    • Ի଎ Cs = 1.02 ͰܭࢉྖҬΛԣ੾Δ࣌ؒ໿ 1.0 ͷ 8 ഒͰ͋Δ t = 8.0 ·Ͱܭࢉ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 6 / 17
  7. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ • SPH ͱ GSPH

    Ͱ͸ඇ෺ཧ తͳද໘ுྗͷޮՌͰܗ ͕େ͖͘มܗ • DISPH Ͱ͸ඇ෺ཧతͳද ໘ுྗͷޮՌ͕ͳ͘ͳͬ ͍ͯΔ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 7 / 17
  8. ֤छεΩʔϜʹ͍ͭͯ Density-Independent SPH ๏, GSPH ๏ ͜Ε·Ͱͷ·ͱΊ • DISPH ͸઀৮ෆ࿈ଓ໘ͷѻ͍͕ྑ͍

    (઀৮ෆ࿈ଓ໘ͷͨΊͷ௥Ճͷࢄҳ߲ɺύϥϝʔλ ͳ͠) • GSPH ͸িܸ೾ΛҰ੾ͷύϥϝʔλͳ͠Ͱѻ͑Δ (ѹྗʹ Riemann solver ͷղΛ༻͍Δ ͜ͱͰɺద੾ͳ೪ੑ͕෇Ճ͞ΕΔ) ຊݚڀͷ໨త Riemann Solver Λ DISPH ʹ૊ΈࠐΉ͜ͱͰɺύϥϝʔλͳ͠Ͱ઀৮ෆ࿈ଓ໘, িܸ೾Λѻ͑ ΔεΩʔϜΛ࡞Δ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 8 / 17
  9. Godunov DISPH ๏ಋग़ Godunov DISPH ๏ಋग़ (೤ྗֶୈҰ๏ଇΛى఺) ཻࢠ i ͷඍখ಺෦ΤωϧΪʔมԽ͸ɺཻࢠ͕֎෦͔Βड͚ΔମੵมԽΛ௨ͨ͡࢓ࣄʹΑΔ΋

    ͷ (ॏ৺ͷҐஔมԽΛ௨ͨ͡࢓ࣄ͸ӡಈΤωϧΪʔʹ) dUi = WV olume i (3) DISPH Ͱ͸ (SPH Ͱ΋) WV olume i = −PidVi (4) ཻࢠ i ͕ dt ͷؒʹ֎෦͔Βड͚Δѹྗ͸ɺPi + ϵ Ͱ͋ΔͱԾఆ͠ɺೋ࣍ͷඍখྔΛແࢹͯ͠ ͍Δ. ৽͍͠ߟ͑ํ Pix Λɺཻࢠ i Λத৺ͱͨ͋͠ΒΏΔํ޲͔Βཻࢠ i ͕ड͚Δѹྗͷ͋Δछͷۭ࣌ؒؒฏۉྔ ͱͯ͠ WV olume i = −PixdVi (5) ͕੒Γཱͭͱ͢Δɻ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 9 / 17
  10. Godunov DISPH ๏ಋग़ F(ri) ≈ ∑ j Uj qj FjW(|ri

    − rj|, h) (6) qi = ∑ j UjWij(h) = Pi (γ − 1) (7) DISPH ͷಋग़๏ͱ΄΅ಉ͡Α͏ʹɺ্ͷࣜΛ༻͍ͯΤωϧΪʔํఔࣜ͸ dUi dt = fgrad i N ∑ j PixUiUj q2 i vij · ∇iWij(hi). (8) fgrad i =  1 + hi Dqi N ∑ j Uj ∂Wij(hi) ∂hi   −1 . (9) ͱͳΔɻ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 10 / 17
  11. Godunov DISPH ๏ಋग़ Pix ͷఆٛ Pix ʹ͸೚ҙੑ͕ଘࡏ (ۭ࣌ؒؒฏۉྔͷऔΓํͷ೚ҙੑ)ɻ P∗ ij

    Λཻࢠ i ͱཻࢠ j ͷ෺ཧྔΛೖྗ஋ͱͨ͠ࡍͷ Star region Ͱͷѹྗͷ஋ͱͯ͠ Pix N ∑ j UiUj q2 i vij · ∇iWij(hi) = N ∑ j P∗ ij UiUj q2 i vij · ∇iWij(hi), (10) ͕੒Γཱͭͱఆٛ͢Δɻ • P∗ ij Λཻࢠ i ཻ͕ࢠ j ͔Βड͚Δѹྗͷ࣌ؒฏۉྔͱ͢Δɻ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 11 / 17
  12. Godunov DISPH ๏ಋग़ Godunov DISPH ͷӡಈํఔࣜ, ΤωϧΪʔํఔࣜ ΤωϧΪʔํఔࣜ͸ dUi dt

    = fgrad i N ∑ j P∗ ij UiUj q2 i vij · ∇iWij(hi). (11) ӡಈํఔࣜ͸ɺ࡞༻൓࡞༻Λຬͨ͠ΤωϧΪʔอଘ΋ຬͨ͞ͳ͚Ε͹ͳΒͳ͍ͱ͍͏৚͔݅ ΒٻΊΒΕΔɻ mi dvi dt = − N ∑ j [ fgrad i P∗ ij UiUj q2 i ∇iWij(hi) + fgrad j P∗ ij UiUj q2 j ∇iWij(hj) ] (12) Pix = Pi ͷͱ͖ (DISPH Ͱ࢖༻͞Ε͍ͯΔ) ͸, γάϚͷத਎ͷୈҰ߲ͷѹྗ͸ Piɺୈೋ߲ͷ ѹྗ͸ Pj ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 12 / 17
  13. ςετܭࢉ ఺ݯരൃ ఺ݯരൃ ڧ͍িܸ೾͕ൃੜ͢Δ 3 ࣍ݩͷ໰୊ 0 < x, y,

    z < 1 ͷྖҬͷਅΜதʹ߹ܭ 1 ͷΤω ϧΪʔΛׂΓৼΔɻີ౓͸ 1ɺ଎౓͸ 0. ֎ଆͷ ΤωϧΪʔ͸΄΅ 0 ಺෦ΤωϧΪʔϓϩϑΝΠϧ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 14 / 17
  14. ςετܭࢉ ఺ݯരൃ SSPH • ਓ޻೪ੑ܎਺খ͍͞ͱϊ Πζ͕େ͖͘ͳΔɻେ͖ ͗͢Δͱղ͕ಷΔɻ • ͓͓ΉͶղੳղͱҰக͠ ͍ͯΔ͕ɺਓ޻೪ੑڧ͘

    ͯ͠΋଎౓Ͱৼಈ͕ൃੜ • ѹྗʹ΋ৼಈ͕͋Δ • ௿ີ౓ྖҬͷѹྗʹେ͖ ͳޡࠩ • িܸ೾ޙ໘Ͱͷີ౓͕ղ ੳղͱඍົʹҰக͍ͯ͠ ͳ͍ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 15 / 17
  15. ςετܭࢉ ఺ݯരൃ GDISPH • SPH ͱҧͬͯύϥϝʔλͳ͠Ͱ଎౓ͷৼ ಈΛ཈͑ΒΕ͍ͯΔ • SPH ͱҧͬͯ,

    িܸ೾ޙ໘Ͱͷີ౓ͷ஋ ΋ύϥϝʔλͳ͠ͰղੳղͱҰக • SPH ͱҧͬͯ, ௿ີ౓ྖҬͷѹྗޡ͕ࠩ ཈͑ΒΕ͍ͯΔ • ௿ີ౓ྖҬͰ଎౓ɺ಺෦ΤωϧΪʔʹৼ ಈ͕ൃੜ GDISPH ͸িܸ೾ޙ໘ͷੑೳ͸ GSPH ͱಉ༷ (SPH ʹൺ΂ͯྑ͍݁Ռ). ௿ີ౓ྖҬͰ͸ GDISPH ݻ༗ͷ໰୊͕ൃੜɻͨͩ͠ɺଞͷε ΩʔϜ΋௿ີ౓ྖҬͰݻ༗ͷ໰୊͋Γɻ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 16 / 17
  16. ݁࿦ ݁࿦ • Godunov DISPH ▶ DISPH ʹ Riemann solver

    Λ૊ΈࠐΜͩ Godunov DISPH Λ࡞Δ͜ͱͰɺ઀৮ෆ࿈ଓ໘΋ি ܸ೾΋ύϥϝʔλͳ͠Ͱѻ͑ΔΑ͏ʹͳͬͨ ▶ ࠓޙ͸ςετܭࢉͰ͸ͳ͍ɺ࣮ࡍͷܭࢉͰͷੑೳΛଞͷεΩʔϜͱൺֱ͍͖ͯ͠,GDISPH ͷ࣮༻ੑʹ͍ͭͯݕূ͍͖͍ͯͨ͠ ࣌ؒͷ౎߹্ࡌͤΒΕͳ͔ͬͨ࿩ (઀৮ෆ࿈ଓ໘ͷѻ͍͕ SPH ΑΓ΋ྑ͍ͱ͞Ε͍ͯΔε ΩʔϜͷൺֱ,Godunov DISPH ๏Ͱ Kelvin-Helmholtz ෆ҆ఆੑͷܭࢉ, ଞͷλΠϓͷ Godunov DISPH ಋग़) ͕ଔ࿦ʹࡌ͍ͬͯ·͢ ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 17 / 17
  17. ݁࿦ ग़య Figure: ”Fancy SPH convolution scheme (verbose, modified colors

    scheme)” created by Jlcercos is licenced under CC BY-SA 4.0(https://creativecommons.org/licenses/by-sa/4.0/) ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 17 / 17
  18. ݁࿦ Reference I [Balsara, 1995] Balsara, D. S. (1995). Von

    neumann stability analysis of smoothed particle hydrodynamicsŠsuggestions for optimal algorithms. Journal of Computational Physics, 121(2):357–372. [Brookshaw, 1985] Brookshaw, L. (1985). A method of calculating radiative heat diffusion in particle simulations. Publications of the Astronomical Society of Australia, 6(2):207 r 210. [Cha and Whitworth, 2003] Cha, S.-H. and Whitworth, A. P. (2003). Implementations and tests of godunov-type particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 340(1):73–90. [Garc´ ıa-Senz et al., 2012] Garc´ ıa-Senz, D., Cabez´ on, R. M., and Escart´ ın, J. A. (2012). Improving smoothed particle hydrodynamics with an integral approach to calculating gradients. Astronomy & astrophysics, 538:A9. [Inutsuka, 2002] Inutsuka, S.-i. (2002). Reformulation of smoothed particle hydrodynamics with riemann solver. Journal of Computational Physics, 179. ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 17 / 17
  19. ݁࿦ Reference II [Price, 2008] Price, D. J. (2008). Modelling

    discontinuities and kelvin–helmholtz instabilities in sph. Journal of Computational Physics, 227(24):10040–10057. [Saitoh and Makino, 2013] Saitoh, T. R. and Makino, J. (2013). A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS. The Astrophysical Journal, 768(1):44. [Wadsley et al., 2017] Wadsley, J. W., Keller, B. W., and Quinn, T. R. (2017). Gasoline2: a modern smoothed particle hydrodynamics code. Monthly Notices of the Royal Astronomical Society, 471(2):2357–2369. ౬ઙ ୓޺ (ஜ೾େֶ) Godunov DISPH ଔۀݚڀൃදձ, January 31, 2023 17 / 17