Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
開発室Graph
July 27, 2018
Technology
2
2.1k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
技術を楽しもう/enjoy_engineering
studio_graph
1
550
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.7k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5.2k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
10k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
4.1k
Other Decks in Technology
See All in Technology
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
9
19k
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
Next.js 16の新機能 Cache Components について
sutetotanuki
0
210
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
60k
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
840
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
160
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
110
Introduction to Bill One Development Engineer
sansan33
PRO
0
340
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
700
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
320
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Designing for Performance
lara
610
70k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
[SF Ruby Conf 2025] Rails X
palkan
0
680
Claude Code のすすめ
schroneko
67
210k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
44
Context Engineering - Making Every Token Count
addyosmani
9
590
RailsConf 2023
tenderlove
30
1.3k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
34
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
360
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15