Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を使ったレシピ調理手順の識別
Search
開発室Graph
July 27, 2018
Technology
2
2.1k
機械学習を使ったレシピ調理手順の識別
機械学習を使ってレシピの調理手順を識別する話です。
開発室Graph
July 27, 2018
Tweet
Share
More Decks by 開発室Graph
See All by 開発室Graph
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
360
技術を楽しもう/enjoy_engineering
studio_graph
1
530
めちゃくちゃ悩んでクックパッドに新卒入社して1年経った/newgrads_event2020
studio_graph
7
5.6k
クックパッドでの機械学習開発フロー/ml-ops-in-cookpad
studio_graph
8
14k
DWHを活用した機械学習プロジェクト/ml-with-dwh
studio_graph
6
5.1k
無理をしない機械学習プロジェクト2/step_or_not2
studio_graph
9
10k
知識グラフのリンク予測におけるGANを用いたネガティブサンプルの生成
studio_graph
4
4k
Other Decks in Technology
See All in Technology
Skrub: machine-learning with dataframes
gaelvaroquaux
0
110
退屈なことはDevinにやらせよう〜〜Devin APIを使ったVisual Regression Testの自動追加〜
kawamataryo
4
1.1k
AWSで推進するデータマネジメント
kawanago
0
850
つくって納得、つかって実感! 大規模言語モデルことはじめ
recruitengineers
PRO
32
12k
7月のガバクラ利用料が高かったので調べてみた
techniczna
3
820
DDD集約とサービスコンテキスト境界との関係性
pandayumi
2
230
エラーとアクセシビリティ
schktjm
0
310
衝突して強くなる! BLUE GIANTと アジャイルチームの共通点とは ― いきいきと活気に満ちたグルーヴあるチームを作るコツ ― / BLUE GIANT and Agile Teams
naitosatoshi
0
290
Jaws-ug名古屋_LT資料_20250829
azoo2024
3
210
AIのグローバルトレンド2025 #scrummikawa / global ai trend
kyonmm
PRO
0
150
モダンフロントエンド 開発研修
recruitengineers
PRO
10
6.2k
トヨタ生産方式(TPS)入門
recruitengineers
PRO
6
1.4k
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Unsuck your backbone
ammeep
671
58k
KATA
mclloyd
32
14k
Navigating Team Friction
lara
189
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Building Applications with DynamoDB
mza
96
6.6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Typedesign – Prime Four
hannesfritz
42
2.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
機械学習を使った レシピ調理手順の識別 C-8 #devsumiC クックパッド株式会社 研究開発部 エンジニア 1
クックパッド • 毎日の料理を楽しみにするサービス • 月間約5,500万人 • レシピ数は290万品 • 大量の画像・テキストデータ •
ユーザがレシピを書いて投稿 ◦ かなり自由な投稿が可能 ◦ 気軽に投稿できる 2
課題の設定 3
調理手順 • クックパッドのレシピ ◦ タイトル ◦ 材料・分量 ◦ 調理手順 ▪
画像とテキストで入力 できる 4
調理手順 or Not • 調理の手順そのものではないもの (非手順)がある • 料理に関する手順のみを抜き出した い ↓
• 非手順を識別するアルゴリズム を作った 5
ルールベースな方法を試す 6
機械学習を使わずに解けないか • データを眺めて開発者が自ら解いてみる ◦ 非手順には出てくる単語が限られている ◦ 文章全体を見ることはなく特定のキーワードで判断していた • まずはキーワード抽出でできないかやってみる •
機械学習を使わずに済むならそれに越したことはない ◦ メンテナンスも楽だし可読性も高い 7
キーワード抽出でやってみる • 非手順 ◦ 人気レシピに多い ◦ 必ず調理手順の後ろの方に存在 • 人気レシピの調理手順のうち後ろ10件 を取得する
• キーワードを抽出する ◦ 単語ごとに分割する ◦ 多く出現する順に並べる ◦ ['掲載', 'つくれぽ', '話題', '感謝', 'み なさん', '100人', 'レシピ', 'コメント', ' れぽ', 'ありがとう'] 8
キーワード抽出はうまくいかない • うまくいかない例 ◦ 上に三つ葉を散らしたらできあがり→非手順と判定 ◦ ◦◦さんがマヨネーズを足して作ってくれました→手順と判定 • Accuracy(正解率) ◦
51.7% 9
機械学習を試す 10
機械学習を試してみる • まずはスコアを出すことを第一に考える • 一般的な手法に頼る ◦ キーワードの組み合わせの出現の特徴量を使って分類 ▪ TF-IDFベクトル •
単語の出現回数を重み付けしたもの ▪ ロジスティック回帰 • データを2値分類する手法 11
92.4% Accuracy 12
実験だけでなくリリースまでやる • サービスから参照可能にするためにデータベースに投入 ◦ 毎週ペアプロしながらバッチにしていった ◦ スコアを確認しつつリファクタリング • 実際にサービスへ投入予定 ◦
スマートピーカーによるレシピの音声読み上げ ◦ レシピ検索のインデックスからの除外 13
まとめ 14
やるべきことをやるべき順でちゃんとやる • ディスカッション/ヒアリング しながら進めた ◦ 1人で黙々とやるものではない ◦ 課題設定も含めタスクの全行程で行った • 一般的な手法を使った
◦ 一般的な手法でちゃんとうまくいった ◦ ディープラーニングはうまくいかなかったときに使う • きちんと性能をチェックした ◦ 正解率だけを見ない ◦ 機械学習には性能をチェックする方法がいくつかある • ちゃんとバッチ化をした • 結果を記録に残していく 15