Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
数学の世界~フラクタル~(社内勉強会1002)
Search
taashi
October 02, 2022
Science
0
99
数学の世界~フラクタル~(社内勉強会1002)
taashi
October 02, 2022
Tweet
Share
More Decks by taashi
See All by taashi
What is Haskell?
taashi
0
31
論文LT会_論文紹介(CU-Net)
taashi
1
550
始めようElmでフロント開発_その02_ローカルWebアプリ
taashi
0
110
AI勉強会_Kerasハンズオン#1_分類
taashi
0
94
始めようElmでフロント開発_その01_Elmの基礎
taashi
0
120
Other Decks in Science
See All in Science
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
170
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
260
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
250
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
380
Introduction to Image Processing: 2.Frequ
hachama
0
380
(2024) Livres, Femmes et Math
mansuy
0
120
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
660
Spectral Sparsification of Hypergraphs
tasusu
0
220
学術講演会中央大学学員会大分支部
tagtag
0
110
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
650
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.2k
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1366
200k
Why Our Code Smells
bkeepers
PRO
335
57k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
How STYLIGHT went responsive
nonsquared
96
5.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Code Review Best Practice
trishagee
65
17k
Transcript
勉 強 会 1 0 / 0 2 ~ 数
学 の 世 界 ( フ ラ ク タ ル ) ~
『 数 学 』 っ て 聞 く と ど
ん な イ メ ー ジ で す か ? 難しそう つまらない 眠くなる ということで 今日は少しでも『数学』を 面白い 楽しい 興味でた となって もらえたらいいな
数学の種類 • 代数学 • 幾何学 • 解析学 • 集合論 •
統計学 とか色々(他にも)ある
幾何学って? 簡単に言うと... 図形や空間の性質を扱う分野 つまり、目に見えやすく、なんとな〜く理解しやすそう! そんな中でも今日は、 フラクタル
フ ラ ク タ ル っ て な ん ぞ
?
フラクタル(図形)とは... 図形の部分と全体が自己相似になっているもの などをいう。 ※出典 wikipedia イマイチワカラナイ。。。
フラクタル(図形)とは... (他の説明 縮尺を変えてもいつまでも同じ形が 規則的に続いていく図形 ※出典 宇宙一わかりやすい科学の教科書 ちょっとわかってきたような気もする(?)。 一部を切り取っても全体や別の一部と同じような形 が現れる図形 同じ様な形を繰り返して描かれる図形
ち ょ っ と 自 分 で 書 い て
み よ う
実は、フラクタル(図形)は プログラミングと相性がいい! 理由は、 「同じ図形を繰り返して書かれる図形」 であるから
問題1 直線を3等分して真ん中の1本を消す操作 を繰り返すフラクタル図形を描画せよ <ヒント> - リカーシブを使うと簡単 - その場合、描画の処理は、一箇所で大丈夫 - 書いて消すというよりは、書くべき線を特定して書くという処理にしたほうが楽
- どんどん増えていく線ではなく、その1つに着目するとよい。
フラクタル図形は、 繰り返すことで少しずつ形が変わっていく 繰り返す回数やそれによってできる図形を 『世代(ジェネレーション)』とも呼び、 スタートは0世代と呼ばれる。 問1のフラクタル図形が、世代が進むごとに どの様に変化していくか確認してみよう!
あれ...? 後半の世代、変わっていない気が... 今回は、画像上にきれいに描画するために 計算して出てきた座標を整数化しているので、 三等分が0以下になると変化がなくなる...
フラクタル図形 わかりましたか? 図形と言っても1次元の図形 なのであんまりわからないかも... ということで、 2次元図形のフラクタルを書いてみよう
問題2 直線を3等分して、その1本分の長さの辺を持つ正三角形 を真ん中に生やす操作を繰り返すフラクタル図形を描画せよ <ヒント> - 問1の進化版と捉えると良い。 ?
ちなみに、正三角形の頂点は、 点の回転として考えると以下の式で求められる。 A (! , ! ) B (" ,
" ) C (# , # ) # = $ − % cos 60 − $ − % sin 60 + % # = $ − % sin 60 + $ − % cos 60 + % ただし、 数学の平面とプログラミングでの画像の増加方向の違いに注意
ちょっとおもしろい形になっていませんか? この図形には、名前が付いています。 その名も、 コッホ曲線
ん? 直線なのに曲線? コッホ曲線は、その長さが 世代が進んでいくことで、無限に伸びていき 複雑な線になるため、 曲線という名前になった (らしい 問2のコッホ曲線が、世代が進むごとに どの様に変化していくか確認してみよう!
コッホ曲線の長さが無限になることの 確認をしてみましょう。 コッホ曲線の長さは、1つ世代が進むことで、 & ' 倍されていきます。 つまり、n世代のときの長さは、 最初の長さをℒとすると & '
( ℒ となる。 これの極限は、 lim (→* 4 3 ( ℒ = ∞
そんなコッホ曲線は、更に、 応用した形で面白い図形が描ける。
問題3 コッホ曲線を3つ使い、スタートを正三角形にした 図形を描画せよ ? ?
何か思い浮かぶものがありませんか? この図形にも、名前が付いています。 その名も、 コッホ雪片
コッホ雪片は、 コッホ曲線から成るのでコッホ曲線同様に、 その周囲の長さは、無限に発散します。 ですが、もう一つ面白い性質があります。 それは、面積です。
コッホ雪片の面積( の極限がどうなるか 確認をしてみましょう。 0世代は正三角形のため、1辺の長さをとすると + = ' & ,となる。 以降は世代が進むごとに、1辺の長さが
- ' ( の 正三角形3 5 4(.-分ずつ面積が増えていきます。 これの極限は、 lim (→* ( = 2 3 5 , ( = - + 8 /0- (.- 3 3 16 , 4 9 ( つまり、
つまりコッホ雪片の面積は、 ある値に収束するのです。 具体的には、 最初の正三角形の面積が1であった場合、 1.6に収束します。 図形の長さは、無限に発散するのに、 それによって作られる面積は、収束する なんて面白いですよね。
他 に ど ん な フ ラ ク タ ル
が あ ん の ?
有名なフラクタル ① 参考動画:https://www.youtube.com/watch?v=9G6uO7ZHtK8 等 マンデルブロ集合
有名なフラクタル ② 参考動画:https://www.youtube.com/watch?v=QsMvoui5WlQ (画質粗い...) 等 シェルピンスキーの ギャスケット
有名なフラクタル ③ 参考動画:https://tomari.org/main/java/kyokusen/sierpinski_carpet.html 等 シェルピンスキーの カーペット
有名なフラクタル ④ 参考動画:https://tomari.org/main/java/kyokusen/sierpinski_carpet.html 等 メンガーの スポンジ
現実のフラクタル① 雪の結晶
現実のフラクタル② 植物の根
現実のフラクタル③ 海岸
現実のフラクタル④ ロマネスコ
現実のフラクタル⑤ 雲
他にも、雷や樹木や葉脈等、 たくさん挙げられます 世の中は、フラクタルが溢れている よかったら探してみてくださいね! 色々まとめているサイトも有る! https://gigazine.net/news/20121225-best-of-fractals/ https://www.buzzfeed.com/jp/terripous/fractal-nature-photos-1 以上!