Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI勉強会_Kerasハンズオン#1_分類
Search
taashi
April 17, 2019
Technology
0
110
AI勉強会_Kerasハンズオン#1_分類
社内勉強会資料
Keras
Google Colaboratory
(修正中...)
- precision, recallの説明追加
taashi
April 17, 2019
Tweet
Share
More Decks by taashi
See All by taashi
What is Haskell?
taashi
0
38
数学の世界~フラクタル~(社内勉強会1002)
taashi
0
130
論文LT会_論文紹介(CU-Net)
taashi
1
580
始めようElmでフロント開発_その02_ローカルWebアプリ
taashi
0
120
始めようElmでフロント開発_その01_Elmの基礎
taashi
0
130
Other Decks in Technology
See All in Technology
AI時代を生き抜くエンジニアキャリアの築き方 (AI-Native 時代、エンジニアという道は 「最大の挑戦の場」となる) / Building an Engineering Career to Thrive in the Age of AI (In the AI-Native Era, the Path of Engineering Becomes the Ultimate Arena of Challenge)
jeongjaesoon
0
260
まずはマネコンでちゃちゃっと作ってから、それをCDKにしてみよか。
yamada_r
2
120
LLMを搭載したプロダクトの品質保証の模索と学び
qa
1
1.1k
エンジニアが主導できる組織づくり ー 製品と事業を進化させる体制へのシフト
ueokande
1
120
IoT x エッジAI - リアルタイ ムAI活用のPoCを今すぐ始め る方法 -
niizawat
0
130
測りにくい成果を測る — BtoB SaaSにおける効果検証への挑戦 / Shirokane Kougyou vol 20
sansan_randd
1
120
はじめてのOSS開発からみえたGo言語の強み
shibukazu
4
1k
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
360
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
320
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
290
Bedrock で検索エージェントを再現しようとした話
ny7760
2
140
Modern Linux
oracle4engineer
PRO
0
170
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
How GitHub (no longer) Works
holman
315
140k
Scaling GitHub
holman
463
140k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Docker and Python
trallard
46
3.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Six Lessons from altMBA
skipperchong
28
4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
AI #1 (classification)
Keras
$# Google% Jupyter notebook$# Google Colaboratory (https://colab.research.google.com/)
12! " GPU, TPU! Google Drive &! … etc
Google Colab PYTHON Notebook
Colab!
(%"# ) : ! :
$ ! Notebook
$" !% GPU% #
GPU
%# & ’shift + enter’ "$ !
$’!’ " Linux !# Linux
ColabDrive&+ Google Drive! drive" Colb)' drive"%* from
google.colab import drive drive.mount('/content/drive') "( google.colabdrive ! Drive.mount$# Google Drive!
' !# URL (& ) Google
Drive% "$ (1)
$ # %! & ' " (’enter’ Google
Drive (2)
E@$#%"! <; *(7- ?.=384 :E@ 96 <;7 <;&'!Slack>
1, PLAYGROUND / 0C D5)+A - $# -2B
,89 Team Drives*(@2)/$#!7 "' 10Team Drives$#!5< (3:-
…) # [001] Install use items &% !.+ Team Drives $#!"' .+46 =; >? # [002] Mount GoogleDrive # [003] Copy data from google drive # [004] Check directory structure
Keras")* $&! '&
% $ )*#( )* $
:'<$ /1 !% '<9 '<7 *)0
(C F ) '<!% '<93" !5 '<9> (,?) '< 8) CF'<9A'< D+('24)(6. 8) FBC;&C'<-= (@+ #E)
Keras PythonA 8<BNNW0!,01 +($"4*TensorFlow, CNTK, Theano ; ID-3)'!- @
CPUGPU6%.2&;@ … etc :>A =?7#&&/ (=?7 ) 59 (JH) E : =?7 GCF
#$ # [005] Define constant value # [006] Make data
file list # [007] Check dog data # [008] Check cat data " ! " ‘_t_XXX.png’ &(Train) ‘_v_XXX.png’ (Validation) ‘_e_XXX.png’ %(Evaluate)
+.0 )C57 ,? %98 /- %98%:=>E04 @) H*(:[1, 0],
G*(:[0, 1] ,? ;F %98G or H OneHotVector )CA("$%&#!),? 6 2 %98'.(B1D ) numpy>E04<3
!#'% KerasOneHotVactor -*' &#$ import keras.utils as ku class_ids
= np.array([1, 0, 1, 1, 2, 0]) one_hots = ku.to_categorical(class_ids) print(one_hots) > [[0, 1, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]] # [009] Make input and teacher data " (,cv2imread Numpy)+ OK
!$ Keras!$ 1) Sequential " 2) functional API# "
Keras!$ " 2) &( " 2)functional API# "'%
#&) % functional API$ % input_layer = Input((64,
64, 1)) cv_1_layer = Conv2D(32, 3)(input_layer) cv_2_layer = Conv2D(64, 3)(cv_1_layer) max_layer = MaxPooling2D()(cv_2_layer) flat_layer = Flatten()(max_layer) output_layer = Dense(2)(flat_layer) *'(" Keras !
Input&! input_layer = Input((64, 64, 1))
( Input(input_shape) #% input_shape ' $ "
Convolution!Conv2D1) Convolution! cv_1_layer = Conv2D(32, 3)(input_layer) 4 Conv2D(filters, kernel_size,
strides=(1, 1), padding=‘valid’, activation=None) *,- filters ( ) (30/%.-) kernel_size - 5 #"+% strides - 5 #"+% padding’valid’padding3 ’same’ 2('&$ activation
MaxPoolingMaxPooling2D.& MaxPooling max_layer = MaxPooling2D()(cv_layer) 3 MaxPooling2D(pool_size=(2, 2), strides=None)
')* pool_size *4 " (# strides *4 " (# ,%2+$ . /5610-!
Flatten# flat_layer = Flatten()(max_layer) % Flatten()
"! $&
Dense output_layer = Dense(2)(flat_layer)
Dense(units, activation=None) units activation
! Activate act_layer = Activate(activation='relu’)(cv_layer)
" Activate(activation=None) activation
;5F(%'- #! (%'- #!3D CB 14,"* (Input)!G.E7<,"* 9:input_shape==3A8 CB
@?& $!6>/ 0/2 & $!)+%'( @?)A8 3D # [010] Define Network
input_layer = Input(IMAGE_SHAPE) cv1_1 = Conv2D(32, 3, padding='same', input_shape=IMAGE_SHAPE)(input_layer)
cv1_1 = Activation(activation='relu')(cv1_1) cv1_2 = Conv2D(32, 3, padding='same')(cv1_1) cv1_2 = Activation(activation='relu')(cv1_2) cv1_max = MaxPooling2D()(cv1_2) cv2_1 = Conv2D(64, 3, padding='same')(cv1_max) cv2_1 = Activation(activation='relu')(cv2_1) cv2_2 = Conv2D(64, 3, padding='same')(cv2_1) cv2_2 = Activation(activation='relu')(cv2_2) cv2_max = MaxPooling2D()(cv2_2) flat_layer = Flatten()(cv2_max) fc = Dense(2)(flat_layer) output_layer = Activation(activation='softmax')(fc)
" Model# Keras model = Model(inputs=[input_layer],
outputs=[output_layer]) Model ! inputs ( ) outputs ( )( ) % $
()'# ! & '# model.summary() +*$ from keras.utils
import plot_model plot_model(model, to_file=MODEL_PNG_NAME) to_file " dot ()%
!- !- model.compile(optimizer=Adam(), loss='categorical_crossentropy',
metrics=['accuracy']) " %& optimizer loss metrics " [’accuracy’]( $ ,#' +*& crossentropy)
fit history = model.fit(train_inputs, train_teachers, batch_size=20,
epochs=100 , validation_data=(valid_inputs, valid_teachers) , shuffle=True, verbose=1, callbacks=callbacks) train_inputs$*#! train_teachers$*#') batch_size epochs % validation_data&(# (!, ')) shuffle! verbose$*!" (1 ) callbacks %()
+ "& + model.save_weights(save_file_name) $+ & ' )*%#(!
model.save(save_file_name) )* $+ & , &
+ # [012] Train
!*Adam )'$categorical_crossentropy & % (# +",
+./, # [013] Check loss and acc '
&#(3loss41acc41$ )% loss((3loss) % (3 )% val loss(*-loss) 5% "! 0(32
0, 0,&"#$ +( "#$ from keras.models import load_model model
= load_model(model_file) !%-. '/ $ model = Model(inputs=[input_layer], outputs=[output_layer]) model.load_weights(model_file) )'/ $ "#-.* $
predict model.predict(predict_inputs) predict_inputs (
) # [014] Load trained model # [015] Predict (Train data) # [016] Predict (Valid data) # [017] Predict (Evaluate data)
'43 51$ (-". 0 '43 , #!///+
)*//&2 1% //&2
,+#%3417 #%3417 0.68 !'" 5/ 2 3+-4+-Convolution&$* Dropout0.55/ .6
,+0.6 ()
Dropout drop_layer =
Dropout()(cv_layer) Dropout(rate) rate
;JIL0'$)8H "&*<F'$)G 8H"&*BK Keras Callback(!:= 64A;J-.
A;J1 lossE N28H</ Callback;J+C%#M(O@3 %#M) ) D97, ;J(fit)5?callbacls>?@3
# " ModelCheckpoint " import keras.callbacks as kc kc.ModelCheckpoint(
filepath=MODEL_FILE_NAME, save_weights_only=True , save_best_only=True, period=1) filepath ( ) save_weights_only save_best_only period ! val_loss!
AutoEncoder etc
…
Keras