Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
Search
Y-h. Taguchi
PRO
June 21, 2024
Science
1
200
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
presentation at SIGBIO78
https://www.ipsj.or.jp/kenkyukai/event/mps148bio78.html
2024/6/21
Y-h. Taguchi
PRO
June 21, 2024
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
知能とはなにか -ヒトとAIのあいだ-
tagtag
PRO
0
30
Genomic Differentiation of Sleep and Anesthesia: The Role of RHO GTPase and Cortical Neurons
tagtag
PRO
0
21
睡眠と麻酔による無意識状態のゲノム的差異:RHO GTPaseと皮質ニューロンの役割
tagtag
PRO
0
54
Somatostatin-Expressing Neurons Regulate Sleep Deprivation and Recovery: A Data-Driven Transcriptomic Analysis
tagtag
PRO
0
21
Sstニューロンによる睡眠不足と回復の制御:データ駆動型トランスクリプトーム解析
tagtag
PRO
0
46
テンソル分解を用いたVisiumデータの高精度・高速デコンボリューション手法
tagtag
PRO
0
48
Novel Tensor Decomposition-Based Approach for Cell-Type Deconvolution in Visium Datasets
tagtag
PRO
0
19
presen_同仁倶楽部.pdf
tagtag
PRO
0
42
知能とはなにか -ヒトとAIのあいだ-
tagtag
PRO
1
61
Other Decks in Science
See All in Science
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
460
検索と推論タスクに関する論文の紹介
ynakano
1
150
Algorithmic Aspects of Quiver Representations
tasusu
0
190
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
420
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
28k
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1.1k
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
190
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
770
Featured
See All Featured
Between Models and Reality
mayunak
1
200
How to make the Groovebox
asonas
2
1.9k
Scaling GitHub
holman
464
140k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Navigating Weather and Climate Data
rabernat
0
110
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Discover your Explorer Soul
emna__ayadi
2
1.1k
WCS-LA-2024
lcolladotor
0
450
Crafting Experiences
bethany
1
55
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
The Cult of Friendly URLs
andyhume
79
6.8k
HDC tutorial
michielstock
1
400
Transcript
SIGBIO78 1 テンソル分解を用いた教師なし学習による変数選択法 のシングルセルマルチオミックスデータ解析への応用 田口善弘(中央大学)・ターキー ターキー(キング・アブ ドゥルアズィーズ大学)
SIGBIO78 2 この研究は2021年9月に原著論文として刊行済みです
SIGBIO78 3 宣伝:テンソル分解を用いた教師なし学 習による変数選択法の教科書の第2版 第2版 が2024年8月31日に発売です。大巾に 内容を増強して500頁超の大著(?)に なりました。ぜひ、お買い上げください。 ←お買い上げ はこちらから
SIGBIO78 4 本講演の内容は原著論文ではなく、 第2版の当該部分に準拠しています。
SIGBIO78 5 Single cell data sets: GSE154762: Dataset 1 GSE121708:
Dataset 2
SIGBIO78 6 Type of Measurements • scRNA-seq • scMethyl-seq •
scATAC-seq Sample (〜103 single cells) vs 〜104 genes (scRNA-seq) 〜107 sites (scMethyl-seq, scATAC-seq) Large p small n problem
SIGBIO78 7 研究の目的 • 遺伝子発現プロファイル、DNAメチル化、ATAC-seq をいい具合に統合解析してラベルに整合的な2次 元埋め込みをUMAP等で作れるようになりたい。 • 遺伝子選択を行って現象に重要な遺伝子を選択し たい。
SIGBIO78 8 統合解析手法:テンソル分解を用いた教師なし学習 による変数選択法 M N1 N2 N3 特異値分解 テンソル
テンソル分解 x i k jk =∑ l=1 L u li k k λ l k v l jk x ljk =∑ i k =1 N k u li k x i k jk =∑ l 1 =1 L 1 ∑ l 2 =1 L 2 ∑ l 3 =1 L 3 G(l1 l2 l3 )ul 1 l ul 2 j ul 3 k M M
SIGBIO78 9 データの前処理 メチル化プロファイル: メチル化:+1 非メチル化:−1 非検出:0 ATAC-seq: 200塩基長(ヒストン+リンカー)で平均
SIGBIO78 10 j(single cell)に付与された特異値ベクト ルvlj ,ul2j とラベルの整合性チェック →カテゴリ回帰 v ljk
=a lks δ js +b lk u l 2 j =a l 2 s δ js +b l 2 δjs :single cell j がラベルsの時1,それ以外は0
SIGBIO78 11 j(single cell)に 付与された特 異値ベクトル vlj ,ul2j とラベル の整合性は全
3プロファイル を使った時が 最良
SIGBIO78 12 u l 2 j ∈ℝL×M→ UMAP 個別プロファイル→ (L=10)
2プロファイル統合→ (L=10×2) 全3プロファイル統合→ (L=10×3) Data set 1
SIGBIO78 13 個別プロファイル→ (L=10) 2プロファイル統合→ (L=10×2) 全3プロファイル統合→ (L=10×3) Data set
2 u l 2 j ∈ℝL×M→ UMAP
SIGBIO78 14 図が小さくてわからないかもしれません が、全3プロファイルを使った場合が一番 ラベルとの整合性がいいです。
SIGBIO78 15 遺伝子選択 ラベルと有意に相関しているul2j だけを用いて、以下 の量を計算。 最大の値をとるのはdata set 1,2ともl1 =1だったの
でl1 =1であるul1l(つまりu1l)を採用。 ∑ l 2 ∑ l 3 =1 3 G(l 1 l 2 l 3 )2
SIGBIO78 16 u 1i 1 =∑ l=1 L u 1
l u li 1 1 Pi 1 =Pχ2 [> (u1i 1 σ l 2 )2 ] Benjamini-Hochberg基準で多重比較補正して 0.01以下の遺伝子のみ選択。 (k=1: RNA-seq) 累積χ2分布 (ガウス分布が帰無仮説)
SIGBIO78 17 Data set 1 :47遺伝子、Data set 2:175遺伝子 エンリッチメント解析サイトEnrichrで解析したと ころ、生物学的に意味がある多数のアノテーショ
ンと相関していたので、遺伝子選択にも有効であ ることが分かった。
SIGBIO78 18 この方法は大部分が欠損している場合にもOK
SIGBIO78 19 利点 • 一千万次元×細胞数の行列を扱える(疎行列な のでRのSparse Matrix Formatを使う)。 • 特異値分解も疎行列用の関数使用
• 殆どが欠損値であってもそのまま扱える • 次元数が異なっている複数の行列を簡単に統 合解析可能。
SIGBIO78 20 Bioconductorパッケージをリリース