Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
統計・マーケ・R/Python・機械学習 Meetup! #2 2017.10.11
Search
Yutaka
October 10, 2017
Programming
0
190
統計・マーケ・R/Python・機械学習 Meetup! #2 2017.10.11
Yutaka
October 10, 2017
Tweet
Share
More Decks by Yutaka
See All by Yutaka
SwiftUI で複数のアラート表示を管理する
tajitaji
0
110
Swift 6 の地味な (?) アップデート
tajitaji
1
410
2018.01.19 すくすく子育てエンジニア Meetup #1
tajitaji
1
2.2k
mlmodel のコンパイル
tajitaji
0
1.8k
Vapor プロジェクトの開発に使えそうなツールの紹介
tajitaji
0
480
Server Side Swift, Vapor を触ってみた
tajitaji
0
1.9k
SwiftでのError Handlingを学び直す!
tajitaji
3
810
Other Decks in Programming
See All in Programming
AWS CDKの推しポイントN選
akihisaikeda
1
240
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
440
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
270
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
210
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
satoaoaka
0
250
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
170
sbt 2
xuwei_k
0
300
TestingOsaka6_Ozono
o3
0
160
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
410
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
2.9k
Microservices rules: What good looks like
cer
PRO
0
1.5k
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
360
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Building an army of robots
kneath
306
46k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Rails Girls Zürich Keynote
gr2m
95
14k
It's Worth the Effort
3n
187
29k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
RailsConf 2023
tenderlove
30
1.3k
Transcript
iOSアプリに 機械学習入れてみました 統計・マーケ・R/Python・機械学習 Meetup! #2 2017.10.11 多鹿豊
目次 ◦ 自己紹介 ◦ Demo ◦ アプリの説明 ◦ 特徴 ◦
実装の概要 ◦ まとめ
目次 ◦ 自己紹介 ◦ Demo ◦ アプリの説明 ◦ 特徴 ◦
実装の概要 ◦ まとめ
自己紹介(personal) ◦ 多鹿 豊 (Tajika Yutaka) ◦ @taji-taji ◦ Qiita,
Github ◦ 統計・機械学習 →専門外
自己紹介(work) ◦ ウェルスタイル株式会社 ◦ 家族限定SNS「wellnote」を開発・運営 ◦ iOSエンジニア ◦ AWS, PHP,
Python, Rails, etc...
自己紹介(hobby) ◦ アプリ作ってます ◦ 観葉植物が好き
目次 ◦ 自己紹介 ◦ Demo ◦ アプリの説明 ◦ 特徴 ◦
実装の概要 ◦ まとめ
Demo iOSアプリの中で機械学習 〜果物画像分類〜
目次 ◦ 自己紹介 ◦ Demo ◦ アプリの説明 ◦ 特徴 ◦
実装の概要 ◦ まとめ
アプリの説明
特徴 ◦ 通信を行わず、アプリ内で画像分類 ◦ 画像をネットワークに乗せないのでセキュア ◦ ネットワークがなくても分類ができる ◦ アプリの容量が大きくなる
実装概要 学習 推論 学習済み モデル Keras Core ML Core ML
Tools 教師データ 未知のデータ 分類 結果 学習済み モデル
実装概要 学習 推論 学習済み モデル Keras Core ML Core ML
Tools 教師データ 未知のデータ 分類 結果 学習済み モデル
実装概要 学習 推論 学習済み モデル Keras Core ML Core ML
Tools 教師データ 未知のデータ 分類 結果 学習済み モデル
CoreML ◦ 機械学習のモデルをiOSアプリ(*1) に統合する ためのフレームワーク ◦ →iOSアプリの実装時に使用 ◦ iOS11から使用できる https://developer.apple.com/documentation/coreml
実装概要 学習 推論 学習済み モデル Keras Core ML Core ML
Tools 教師データ 未知のデータ 分類 結果 学習済み モデル
coremltools ◦ 学習済みモデルをCoreMLで使用できるファイ ルに変換 ◦ Keras, Caffe, scikit-learnなどで作成したモデ ルを変換できる ◦
Appleがオープンソースで開発 https://github.com/apple/coremltools
実装概要 学習 推論 学習済み モデル Keras Core ML Core ML
Tools 教師データ 未知のデータ 分類 結果 学習済み モデル
目次 ◦ 自己紹介 ◦ Demo ◦ アプリの説明 ◦ 特徴 ◦
実装の概要 ◦ まとめ
まとめ
まとめ ◦ iOS11からCoreMLフレームワークを使ってアプリに機械 学習を取り入れることが容易に
まとめ ◦ iOS11からCoreMLフレームワークを使ってアプリに機械 学習を取り入れることが容易に ◦ アプリ側では推論の処理のみ
まとめ ◦ iOS11からCoreMLフレームワークを使ってアプリに機械 学習を取り入れることが容易に ◦ アプリ側では推論の処理のみ ◦ ネットワークを必要としない機械学習のアプリ
まとめ ◦ iOS11からCoreMLフレームワークを使ってアプリに機械 学習を取り入れることが容易に ◦ アプリ側では推論の処理のみ ◦ ネットワークを必要としない機械学習のアプリ ◦ 学習はKerasやCaffeを使って事前に行う
宣伝①
https://www.udemy.com/ioskerascoreml/
宣伝②
エンジニア募集中!
ご清聴ありがとうございました