Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth...
Search
TakaakiKakei
December 10, 2023
Technology
0
1k
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth 2023に登壇しました #AWSreInvent #cmregrowth
re:Invent2023の振り返りイベントCM re:Growth 2023で登壇した生成AIの話です
TakaakiKakei
December 10, 2023
Tweet
Share
More Decks by TakaakiKakei
See All by TakaakiKakei
生成AIの現在地点とこれからの可能性
takaakikakei
0
19
AIプロダクト開発から得られた知見 - 2025年1月版
takaakikakei
0
220
re:Invent 2024 生成AIまとめ
takaakikakei
0
400
OpenAIのAssistants API(Beta)の概要と使い方
takaakikakei
0
490
企業向け生成AIアプリの 開発から得られた知見
takaakikakei
0
570
LangChainを使ってChatGPTの機能を拡張してみた ~過去の会話やGoogle検索結果を活用して自然な応答を生成する方法~ #DevIO2023
takaakikakei
1
2.5k
Slack Boltコース!AWS Lambda & Pythonのビキナー仕立て #devio2022
takaakikakei
0
5.3k
AWS Step Functions上でエラーが発生した場合の効果的な通知方法を検討してみた
takaakikakei
0
7.4k
Other Decks in Technology
See All in Technology
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
1
1.1k
エンジニアの育成を支える爆速フィードバック文化
sansantech
PRO
3
1.1k
Cloud Spanner 導入で実現した快適な開発と運用について
colopl
1
560
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
24
7k
Culture Deck
optfit
0
410
トラシューアニマルになろう ~開発者だからこそできる、安定したサービス作りの秘訣~
jacopen
2
2k
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
2
1.5k
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
570
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
1.1k
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
550
PL900試験から学ぶ Power Platform 基礎知識講座
kumikeyy
0
130
自動テストの世界に、この5年間で起きたこと
autifyhq
10
8.5k
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
Building Adaptive Systems
keathley
40
2.4k
A designer walks into a library…
pauljervisheath
205
24k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
How to Ace a Technical Interview
jacobian
276
23k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
Transcript
AWSによる独⾃データ活⽤の ⽣成AIソリューション 筧 剛彰(Takaaki Kakei) 2023/12/08 1
2 自己紹介 筧 剛彰 Takaaki Kakei • AWS事業本部 • 業務改善や生成AIアプリ開発
• re:Invent2023で初の現地参加
3 皆さん、生成AIを業務活用されていますか?
4 皆さん、独自データを活用した 生成AIを使っていますか?
5 このセッションについて re:Invent2023で発表された、 独自データ活用の生成AIソリューションを3つ紹介しま す Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
6 このセッションのゴール AWSによる独自データ活用の 生成AIソリューションついて 話せる人になりましょう!
7 目次 第0部:まずは「独自データを活用した生成AI」について知ろう 第1部:Amazon Q編 第2部:Amazon Bedrock - Knowledge base編
第3部:Amazon Bedrock - Agents編 セッションのまとめ
8 PART 0 まずは「独自データを活用した生成AI」について知ろう
9 生成AIが知らない情報は?
10 生成AIが知らない情報 最新の情報は知らない
11 生成AIが知らない情報 企業等の独自データは知らない
12 独自データを活用した 生成AIを実現するには?
13 独自データを活用した生成AIの実現方法 Fine-tuning RAG 大きく分けて2つある
14 独自データを活用した生成AIの実現方法 Fine-tuning RAG 既存モデルを独自のデータで 追加学習する手法
15 独自データを活用した生成AIの実現方法 Fine-tuning RAG 独自のデータソースから情報を検索し それを元に回答を生成する手法
16 RAGのイメージ図
17 今回紹介するAWSソリューション Amazon Q (For Business Use) Amazon Bedrock Knowledge
base Amazon Bedrock Agents
18 今回紹介するAWSソリューション この3つはRAGのソリューションです Amazon Q (For Business Use) Amazon Bedrock
Knowledge base Amazon Bedrock Agents
19 PART 1 Amazon Q編
20 第一部について 第一部では、Amazon Qの概要と RAG機能を紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
21 Amazon Qの概要 • 会話型AIアシスタント • プレビュー版 • AWSの様々なサービスで、ユ ーザーや開発者体験を向上
22 Amazon Q (For Business Use) • Amazon Qの機能の一つ •
RAGアプリケーションを簡単 に作れる • Kendraから情報取得して回答 を生成
23 Amazon Qを使ったRAG
24 Amazon Qの対応するデータソース 様々なデータソースに簡単に接続ができる
25 関連ブログ https://dev.classmethod.jp/articles/try_amazon_qbusiness_api/
26 PART 2 Amazon Bedrock - Knowledge base編
27 第二部について 第二部では、Amazon Bedrockの概要と Knowledge base機能を利用したRAGを紹介します Amazon Q (For Business
Use) Amazon Bedrock Knowledge base Amazon Bedrock Agents
28 Amazon Bedrockとは • Amazonや主要なAIスタートア ップ企業が提供する基盤モデ ルを簡単に利用できるサービ ス • Amazon
Titan, Anthropic Claude など
29 Amazon Bedrock - Knowledge base • Amazon Bedrockの機能の一つ •
特定ベクトルデータベースか ら情報取得して回答
30 Amazon Bedrock - Knowledge baseを使ったRAG
31 関連ブログ https://dev.classmethod.jp/articles/update-reinvent2023-bedrock-rag/
32 PART 3 Amazon Bedrock - Agents編
33 第三部について 第三部では、Amazon Bedrockの Agents機能を利用したRAGを紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
34 Amazon Bedrock - Agents • Amazon Bedrockの一機能 • 複数のKnowledge
baseと Lambda関数から情報取得し て回答 • Knowledge baseより複雑なタ スクの実行が可能
35 Amazon Bedrock - Agentsを使ったRAG
36 関連ブログ https://dev.classmethod.jp/articles/agents-for-amazon-bedrock-ga/
37 セッションのまとめ
38 セッションのまとめ 今回扱った 3 つのソリューションを 振り返ってみましょう
39 セッションまとめ AWSによる独自データ活用の 生成AIソリューションを3つ紹介しました Amazon Q (For Business Use) Amazon
Bedrock Knowledge base Amazon Bedrock Agents
40 どのソリューションが一番おすすめ?
現時点の私のおすすめ 6 Amazon Q •データソースの拡張性が⾼い •コスパがよさそう •管理が必要なリソースが少ない ※ただし、プレビュー版であることに注意
42 皆さん、AWSによる独自データ活用の 生成AIソリューションついて 理解が深まりましたか?
43 さいごに 次は実際に試して 業務に活用していきましょう!
44