Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth...
Search
TakaakiKakei
December 10, 2023
Technology
0
1.1k
「AWSによる独自データ活用の生成AIソリューション」というタイトルでCM re:Growth 2023に登壇しました #AWSreInvent #cmregrowth
re:Invent2023の振り返りイベントCM re:Growth 2023で登壇した生成AIの話です
TakaakiKakei
December 10, 2023
Tweet
Share
More Decks by TakaakiKakei
See All by TakaakiKakei
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
企業が押さえるべきMCPの未来
takaakikakei
5
1.5k
5分で語るMCP
takaakikakei
0
31
生成AIの現在地点とこれからの可能性
takaakikakei
0
260
AIプロダクト開発から得られた知見 - 2025年1月版
takaakikakei
0
420
re:Invent 2024 生成AIまとめ
takaakikakei
0
610
OpenAIのAssistants API(Beta)の概要と使い方
takaakikakei
0
710
企業向け生成AIアプリの 開発から得られた知見
takaakikakei
0
710
LangChainを使ってChatGPTの機能を拡張してみた ~過去の会話やGoogle検索結果を活用して自然な応答を生成する方法~ #DevIO2023
takaakikakei
1
2.6k
Other Decks in Technology
See All in Technology
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
490
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
160
普通のチームがスクラムを会得するたった一つの冴えたやり方 / the best way to scrum
okamototakuyasr2
0
100
Modern Linux
oracle4engineer
PRO
0
150
roppongirb_20250911
igaiga
1
240
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
450
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
250
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
250
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1.1k
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
370
実践!カスタムインストラクション&スラッシュコマンド
puku0x
0
480
2025年夏 コーディングエージェントを統べる者
nwiizo
0
180
Featured
See All Featured
Making Projects Easy
brettharned
117
6.4k
Balancing Empowerment & Direction
lara
3
620
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Become a Pro
speakerdeck
PRO
29
5.5k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Invisible Side of Design
smashingmag
301
51k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
For a Future-Friendly Web
brad_frost
180
9.9k
Transcript
AWSによる独⾃データ活⽤の ⽣成AIソリューション 筧 剛彰(Takaaki Kakei) 2023/12/08 1
2 自己紹介 筧 剛彰 Takaaki Kakei • AWS事業本部 • 業務改善や生成AIアプリ開発
• re:Invent2023で初の現地参加
3 皆さん、生成AIを業務活用されていますか?
4 皆さん、独自データを活用した 生成AIを使っていますか?
5 このセッションについて re:Invent2023で発表された、 独自データ活用の生成AIソリューションを3つ紹介しま す Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
6 このセッションのゴール AWSによる独自データ活用の 生成AIソリューションついて 話せる人になりましょう!
7 目次 第0部:まずは「独自データを活用した生成AI」について知ろう 第1部:Amazon Q編 第2部:Amazon Bedrock - Knowledge base編
第3部:Amazon Bedrock - Agents編 セッションのまとめ
8 PART 0 まずは「独自データを活用した生成AI」について知ろう
9 生成AIが知らない情報は?
10 生成AIが知らない情報 最新の情報は知らない
11 生成AIが知らない情報 企業等の独自データは知らない
12 独自データを活用した 生成AIを実現するには?
13 独自データを活用した生成AIの実現方法 Fine-tuning RAG 大きく分けて2つある
14 独自データを活用した生成AIの実現方法 Fine-tuning RAG 既存モデルを独自のデータで 追加学習する手法
15 独自データを活用した生成AIの実現方法 Fine-tuning RAG 独自のデータソースから情報を検索し それを元に回答を生成する手法
16 RAGのイメージ図
17 今回紹介するAWSソリューション Amazon Q (For Business Use) Amazon Bedrock Knowledge
base Amazon Bedrock Agents
18 今回紹介するAWSソリューション この3つはRAGのソリューションです Amazon Q (For Business Use) Amazon Bedrock
Knowledge base Amazon Bedrock Agents
19 PART 1 Amazon Q編
20 第一部について 第一部では、Amazon Qの概要と RAG機能を紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
21 Amazon Qの概要 • 会話型AIアシスタント • プレビュー版 • AWSの様々なサービスで、ユ ーザーや開発者体験を向上
22 Amazon Q (For Business Use) • Amazon Qの機能の一つ •
RAGアプリケーションを簡単 に作れる • Kendraから情報取得して回答 を生成
23 Amazon Qを使ったRAG
24 Amazon Qの対応するデータソース 様々なデータソースに簡単に接続ができる
25 関連ブログ https://dev.classmethod.jp/articles/try_amazon_qbusiness_api/
26 PART 2 Amazon Bedrock - Knowledge base編
27 第二部について 第二部では、Amazon Bedrockの概要と Knowledge base機能を利用したRAGを紹介します Amazon Q (For Business
Use) Amazon Bedrock Knowledge base Amazon Bedrock Agents
28 Amazon Bedrockとは • Amazonや主要なAIスタートア ップ企業が提供する基盤モデ ルを簡単に利用できるサービ ス • Amazon
Titan, Anthropic Claude など
29 Amazon Bedrock - Knowledge base • Amazon Bedrockの機能の一つ •
特定ベクトルデータベースか ら情報取得して回答
30 Amazon Bedrock - Knowledge baseを使ったRAG
31 関連ブログ https://dev.classmethod.jp/articles/update-reinvent2023-bedrock-rag/
32 PART 3 Amazon Bedrock - Agents編
33 第三部について 第三部では、Amazon Bedrockの Agents機能を利用したRAGを紹介します Amazon Q (For Business Use)
Amazon Bedrock Knowledge base Amazon Bedrock Agents
34 Amazon Bedrock - Agents • Amazon Bedrockの一機能 • 複数のKnowledge
baseと Lambda関数から情報取得し て回答 • Knowledge baseより複雑なタ スクの実行が可能
35 Amazon Bedrock - Agentsを使ったRAG
36 関連ブログ https://dev.classmethod.jp/articles/agents-for-amazon-bedrock-ga/
37 セッションのまとめ
38 セッションのまとめ 今回扱った 3 つのソリューションを 振り返ってみましょう
39 セッションまとめ AWSによる独自データ活用の 生成AIソリューションを3つ紹介しました Amazon Q (For Business Use) Amazon
Bedrock Knowledge base Amazon Bedrock Agents
40 どのソリューションが一番おすすめ?
現時点の私のおすすめ 6 Amazon Q •データソースの拡張性が⾼い •コスパがよさそう •管理が必要なリソースが少ない ※ただし、プレビュー版であることに注意
42 皆さん、AWSによる独自データ活用の 生成AIソリューションついて 理解が深まりましたか?
43 さいごに 次は実際に試して 業務に活用していきましょう!
44