Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
因果と相関入門
Search
Takanobu Nozawa
July 17, 2020
Technology
1
280
因果と相関入門
社内LTで発表した因果と相関の入門的な内容についての資料です。
内容は「原因と結果の経済学」という書籍からピックアップしたものになっています。
Takanobu Nozawa
July 17, 2020
Tweet
Share
More Decks by Takanobu Nozawa
See All by Takanobu Nozawa
低コストで実現する社内文書RAG機能を搭載したAIチャットボット開発
takapy
4
5.2k
コミュニティサービスに「あなたへ」フィードを リリースするまでの試行錯誤
takapy
1
1.7k
NLPを活用したオンボーディング改善とコールドスタート問題への対策
takapy
4
5.7k
自然言語可視化ライブラリ 「nlplot」のご紹介
takapy
3
4.4k
コミュニティサービスにおけるレコメンデーションの変遷とMLパイプラインについて
takapy
2
7.1k
SageMaker StudioとStep Functionsを用いてMLOpsへの一歩を踏み出そう
takapy
0
8.7k
GoogleColabとVSCodeを用いた分析環境運用Tips
takapy
15
14k
word2vecを利用した埋め込み分析とSWEMを用いた比較実験
takapy
0
2.4k
トピックモデルを活用したレコメンデーションの実装
takapy
1
6.6k
Other Decks in Technology
See All in Technology
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
160
Oracle Cloud Infrastructure:2026年1月度サービス・アップデート
oracle4engineer
PRO
0
150
AI Agent Standards and Protocols: a Walkthrough of MCP, A2A, and more...
glaforge
1
560
Riverpod3.xで実現する実践的UI実装
fumiyasac0921
2
340
2026/01/16_実体験から学ぶ 2025年の失敗と対策_Progate Bar
teba_eleven
1
220
SwiftDataを覗き見る
akidon0000
0
310
Git Training GitHub
yuhattor
1
270
20260120 Amazon VPC のパブリックサブネットを無くしたい!
masaruogura
2
160
人はいかにして 確率的な挙動を 受け入れていくのか
vaaaaanquish
4
2.6k
Web Intelligence and Visual Media Analytics
weblyzard
PRO
1
6.8k
Lambda Durable FunctionsでStep Functionsの代わりはできるのかを試してみた
smt7174
2
140
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
160
Featured
See All Featured
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
97
Agile that works and the tools we love
rasmusluckow
331
21k
Code Review Best Practice
trishagee
74
19k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
50
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
130
Crafting Experiences
bethany
1
37
Practical Orchestrator
shlominoach
191
11k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
ҼՌͱ૬ؔ ʹ͍ͭͯͬ͘͟Γ͓͠·͢
ΞδΣϯμ ͡Ίʹ ҼՌͱ૬ؔͬͯԿʁ ҼՌؔΛূ໌͢Δʹʁ ·ͱΊ ͜ͷຊ͔ΒϐοΫΞοϓͨ͠༰Ͱ͢
͡Ίʹ
·ͣͪ͜ΒΛ͝ཡ͍ͩ͘͞
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ʙʂ ࢠڙମྗ͚ͭΕֶྗ͕͋ΔΜͩʂ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ Ϛʁ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ͜ͷάϥϑΛΈͯ ʮମྗ͕͋Δ͔Βֶྗ͕ߴ͍ʯ ͱߟ͑ͯྑ͍ͷͩΖ͏͔ʁ ㅟ ㅟ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ࢠڙͷֶྗΛ্͛Α͏ͱࢥͬͨΒ ·ͣࢠڙʹମྗΛ͚ͤ͞Δ͖ͳͷ͔ʁ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ͪΖΜɺͦΜͳ͜ͱͳ͍ɻ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ʮҼՌؔʯͱʮ૬ؔؔʯ ΛΔ͜ͱͰ ͷ͝ͱΛਖ਼͘͠ཧղɾஅͰ͖Δ
ҼՌͱ૬ؔͬͯԿʁ
ҼՌؔͱ ͭͷࣄฑͷ͏ͪ ͲͪΒ͔͕ݪҼͰɺͲͪΒ͔͕݁ՌͰ͋Δ ঢ়ଶΛҼՌ͕ؔ͋Δɺͱ͍͏ ˠମྗ͕͋Δͱ͍͏ʮݪҼʯʹΑͬͯɺֶྗ͕ߴ͍ͱ ͍͏ʮ݁Ռʯ͕ͨΒ͞ΕͨͷͰ͋Εɺ͜ͷؔ ҼՌؔͩͱݴ͑Δɻ
૬ؔؔͱ ͭͷࣄฑʹ͕ؔ͋Δͷͷɺ ͦͷͭݪҼͱ݁Ռͷؔʹͳ͍ͷ ͷ͜ͱΛ૬͕ؔؔ͋Δɺͱ͍͏ ˠʮҰݟ͢ΔͱݪҼͷΑ͏ʹݟ͑Δͷʯ͕࠶ͼى͖ ͯɺظ͍ͯ͠ΔΑ͏ͳʮ݁ՌʯಘΒΕͳ͍ɻ
ҼՌؔͱ૬ؔؔ
ҼՌਪ ҼՌؔͳͷ͔૬ؔؔͳͷ͔Λਖ਼͘͠ݟ͚ΔͨΊͷ ํ๏ΛʮҼՌਪʯͱݺͿ ʮܰͳਓؒӡΛ৴͡ɺڧऀҼՌؔΛ৴͡Δʯ ͱ͍͏ݴ༿͋Δ͘Β͍ʮҼՌਪʯσʔλ൙ཞ࣌ ͷࡢࠓͰͱͯେࣄͳڭཆ
ҼՌɾ૬ؔؔΛͲ͏அ͢Δ͔
ͭͷνΣοΫϙΠϯτ ɾʮ·ͬͨ͘ͷۮવʯͰͳ͍͔ ɾʮୈͷมʯଘࡏ͍ͯ͠ͳ͍͔ ɾʮٯͷҼՌؔʯଘࡏ͍ͯ͠ͳ͍͔ ͜ΕΒΛٙ͏͜ͱ͕େࣄ
ʮ·ͬͨ͘ͷۮવʯͰͳ͍͔ ʮݟ͔͚ͤͷ૬ؔʯͱݺΕΔ
ʮୈͷมʯଘࡏ͍ͯ͠ͳ͍͔ ୈͷมͷ͜ͱΛʮަབྷҼࢠʯͱݺͿ ˠ૬ؔؔʹա͗ͳ͍ͷΛҼՌ͕ؔ͋Δ͔ͷΑ͏ʹݟͤͯ͠·͏ͷͷ͜ͱ
ʮٯͷҼՌؔʯଘࡏ͍ͯ͠ͳ͍͔ ݪҼͱࢥ͍ͬͯͨͷ͕࣮݁ՌͰɺ݁ՌͰ͋Δͱࢥ͍ͬͯͨ ͷ͕࣮ݪҼͰ͋Δঢ়ଶ ˠܯͷଟ͍ҬͰ൜ࡑͷൃੜ͕݅ଟ͍ɻ ͕ɺ͜Ε൜ࡑ͕ଟ͍Ҭ͔ͩΒଟ͘ͷܯΛஔ͍ͯ͠Δ ͱߟ͑Δํ͕ཧʹ͔ͳ͍ͬͯΔɻ ʢ൜ࡑ͕ݪҼˠܯ͕݁Ռʣ
ҼՌؔΛূ໌͢Δʹʁ
ࣄ࣮ͷ݁ՌΛΔ͜ͱ͕ॏཁ ࣄ࣮ͱʮԾʹ˓˓͠ͳ͔ͬͨΒͲ͏ͳ͍͔ͬͯͨʯͱ͍͏ɺ ࣮ࡍʹى͜Βͳ͔ͬͨʮͨΒɾΕʯͷγφϦΦͷ͜ͱ ˠҼՌؔΛূ໌͢ΔʹݪҼ͕ىͬͨ͜ͱ͍͏ʮࣄ࣮ʯʹ ͓͚Δ݁ՌͱɺݪҼ͕ى͜Βͳ͔ͬͨͱ͍͏ʮࣄ࣮ʯʹ͓͚Δ ݁ՌΛൺֱ͢Δඞཁ͕͋Δɻ
ྫ͑ ࠂΛग़ͯ͠ച্͕લಉظൺͰ্͕ͬͨͱ͢Δɻ ͜͜Ͱࠂͱച্ͷҼՌ͕ؔ͋Δ͔Ͳ͏͔ΔʹͲ͏͢Εྑ͍͔ʁ
ྫ͑ ࠂΛग़ͯ͠ച্͕લಉظൺͰ্͕ͬͨͱ͢Δɻ ͜͜Ͱࠂͱച্ͷҼՌ͕ؔ͋Δ͔Ͳ͏͔ΔʹͲ͏͢Εྑ͍͔ʁ λΠϜϚγϯΛ͓͑L
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ͕ɺ͜ͷ࣌͝ੈλΠϜϚγϯ ͍ͮΒ͍
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ͡Ό͋Ͳ͏͢Δ͔
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ࣄ࣮Λ ʮͬͱΒ͍͠ʯ Ͱ݀ຒΊ͢Δ
ࣄ࣮ͷ݀ຒΊ ྫ͑ళฮΛࠂ͋Γάϧʔϓͱࠂͳ͠άϧʔϓʹ͚ͯɺ ࠂ͋Γάϧʔϓͷࣄ࣮Λࠂͳ͠άϧʔϓͷࣄ࣮Ͱ݀ຒΊ͢Δ
ࣄ࣮ͷ݀ຒΊ ྫ͑ళฮΛࠂ͋Γάϧʔϓͱࠂͳ͠άϧʔϓʹ͚ͯɺ ࠂ͋Γάϧʔϓͷࣄ࣮Λࠂͳ͠άϧʔϓͷࣄ࣮Ͱ݀ຒΊ͢Δ ˞ҙ˞ ͭͷάϧʔϓ͕౷ܭతʹࣅ௨͓ͬͯΓɺ།ҰҟͳΔ͕ ʮࠂΛग़͔ͨ͠Ͳ͏͔ʯ ͚ͩͰ͋Ε͜ͷάϧʔϓʮൺֱՄೳʯͱஅͰ͖ɺ ࣄ࣮ͷ݀ຒΊ͕ՄೳʹͳΔ
ຊʹͬͯ ҼՌؔΛূ໌͢Δʹʁ
ҼՌؔΛূ໌͢Δʹ ʮൺֱՄೳͳάϧʔϓΛ࡞Γग़͠ɺࣄ࣮ΛͬͱΒ͠ ͍Ͱஔ͖͑Δʯ͜ͱ͕ඞཁ ͕ͩʮൺֱՄೳͳάϧʔϓʯΛ࡞Δͷ༰қͰͳ͍ɻ ˠ͜ͷάϧʔϓΛ࡞Δख๏͕͍͔ͭ͘ଘࡏ͢Δ
ҼՌਪͷख๏ ɾϥϯμϜԽൺֱࢼݧ ˠ࠷࣮֬ͰೃછΈͷ͋Δํ๏͕ͩɺൺֱՄೳͳάϧʔϓʹ ɹɹ͚Δͷ͕͘͠ηϨΫγϣϯόΠΞε͕͔͔ΔՄೳੑɻ ɾସख๏ͱͯ͠ʮࣗવੳʯʮࠩͷࠩੳʯʮϚονϯάੳʯ ʮճؼੳʯͳͲ͕͋ͬͨΓ͢Δɻ
ҼՌਪͷख๏ ɾϥϯμϜԽൺֱࢼݧ ˠ࠷࣮֬ͰೃછΈͷ͋Δํ๏͕ͩɺൺֱՄೳͳάϧʔϓʹ ɹɹ͚Δͷ͕͘͠ηϨΫγϣϯόΠΞε͕͔͔ΔՄೳੑɻ ɾସख๏ͱͯ͠ʮࣗવੳʯʮࠩͷࠩੳʯʮϚονϯάੳʯ ʮճؼੳʯͳͲ͕͋ͬͨΓ͢Δɻ ͍Ζ͍Ζ͋ΔͷͰ ؾʹͳͬͨਓௐͯΈͯͶʙ
·ͱΊ
·ͱΊ ɾࡢࠓͷใࣾձʹ͓͍ͯɺσʔλ͔Βਖ਼͍͠அ͕Ͱ͖ΔΑ͏ ɹʹ͢ΔͨΊʹ૬ؔؔɾҼՌؔΛཧղ͓ͯ͘͠ͷେʂ ɹʢ57ͱ͔ωοτʹո͍͠ਤɾσʔλͱ͔ଟ͍ͷͰʜʣ ɾͪΖΜɺࣄʹ͓͍ͯࢪࡦͷޮՌݕূΛਖ਼͘͠ߦ͏ͨΊ ɹʹɺҼՌਪॏཁʂ
͓ΘΓʂ