Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
因果と相関入門
Search
Takanobu Nozawa
July 17, 2020
Technology
1
250
因果と相関入門
社内LTで発表した因果と相関の入門的な内容についての資料です。
内容は「原因と結果の経済学」という書籍からピックアップしたものになっています。
Takanobu Nozawa
July 17, 2020
Tweet
Share
More Decks by Takanobu Nozawa
See All by Takanobu Nozawa
低コストで実現する社内文書RAG機能を搭載したAIチャットボット開発
takapy
4
3k
コミュニティサービスに「あなたへ」フィードを リリースするまでの試行錯誤
takapy
1
820
NLPを活用したオンボーディング改善とコールドスタート問題への対策
takapy
4
4.8k
自然言語可視化ライブラリ 「nlplot」のご紹介
takapy
3
3.8k
コミュニティサービスにおけるレコメンデーションの変遷とMLパイプラインについて
takapy
2
6.6k
SageMaker StudioとStep Functionsを用いてMLOpsへの一歩を踏み出そう
takapy
0
7.8k
GoogleColabとVSCodeを用いた分析環境運用Tips
takapy
15
14k
word2vecを利用した埋め込み分析とSWEMを用いた比較実験
takapy
0
2.1k
トピックモデルを活用したレコメンデーションの実装
takapy
1
6.2k
Other Decks in Technology
See All in Technology
Snowflake女子会#3 Snowpipeの良さを5分で語るよ
lana2548
0
220
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
730
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
260
AI時代のデータセンターネットワーク
lycorptech_jp
PRO
1
280
re:Invent 2024 Innovation Talks(NET201)で語られた大切なこと
shotashiratori
0
300
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
podman_update_2024-12
orimanabu
1
260
KubeCon NA 2024 Recap / Running WebAssembly (Wasm) Workloads Side-by-Side with Container Workloads
z63d
1
240
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
Oracle Cloudの生成AIサービスって実際どこまで使えるの? エンジニア目線で試してみた
minorun365
PRO
4
280
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
120
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
530
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
133
9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
0
96
Become a Pro
speakerdeck
PRO
26
5k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Typedesign – Prime Four
hannesfritz
40
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Docker and Python
trallard
41
3.1k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Cult of Friendly URLs
andyhume
78
6.1k
Transcript
ҼՌͱ૬ؔ ʹ͍ͭͯͬ͘͟Γ͓͠·͢
ΞδΣϯμ ͡Ίʹ ҼՌͱ૬ؔͬͯԿʁ ҼՌؔΛূ໌͢Δʹʁ ·ͱΊ ͜ͷຊ͔ΒϐοΫΞοϓͨ͠༰Ͱ͢
͡Ίʹ
·ͣͪ͜ΒΛ͝ཡ͍ͩ͘͞
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ʙʂ ࢠڙମྗ͚ͭΕֶྗ͕͋ΔΜͩʂ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ Ϛʁ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ͜ͷάϥϑΛΈͯ ʮମྗ͕͋Δ͔Βֶྗ͕ߴ͍ʯ ͱߟ͑ͯྑ͍ͷͩΖ͏͔ʁ ㅟ ㅟ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ࢠڙͷֶྗΛ্͛Α͏ͱࢥͬͨΒ ·ͣࢠڙʹମྗΛ͚ͤ͞Δ͖ͳͷ͔ʁ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ͪΖΜɺͦΜͳ͜ͱͳ͍ɻ
ମྗςετͱֶྗςετͷಓݝฏۉΛάϥϑʹͨ͠ͷ ʮҼՌؔʯͱʮ૬ؔؔʯ ΛΔ͜ͱͰ ͷ͝ͱΛਖ਼͘͠ཧղɾஅͰ͖Δ
ҼՌͱ૬ؔͬͯԿʁ
ҼՌؔͱ ͭͷࣄฑͷ͏ͪ ͲͪΒ͔͕ݪҼͰɺͲͪΒ͔͕݁ՌͰ͋Δ ঢ়ଶΛҼՌ͕ؔ͋Δɺͱ͍͏ ˠମྗ͕͋Δͱ͍͏ʮݪҼʯʹΑͬͯɺֶྗ͕ߴ͍ͱ ͍͏ʮ݁Ռʯ͕ͨΒ͞ΕͨͷͰ͋Εɺ͜ͷؔ ҼՌؔͩͱݴ͑Δɻ
૬ؔؔͱ ͭͷࣄฑʹ͕ؔ͋Δͷͷɺ ͦͷͭݪҼͱ݁Ռͷؔʹͳ͍ͷ ͷ͜ͱΛ૬͕ؔؔ͋Δɺͱ͍͏ ˠʮҰݟ͢ΔͱݪҼͷΑ͏ʹݟ͑Δͷʯ͕࠶ͼى͖ ͯɺظ͍ͯ͠ΔΑ͏ͳʮ݁ՌʯಘΒΕͳ͍ɻ
ҼՌؔͱ૬ؔؔ
ҼՌਪ ҼՌؔͳͷ͔૬ؔؔͳͷ͔Λਖ਼͘͠ݟ͚ΔͨΊͷ ํ๏ΛʮҼՌਪʯͱݺͿ ʮܰͳਓؒӡΛ৴͡ɺڧऀҼՌؔΛ৴͡Δʯ ͱ͍͏ݴ༿͋Δ͘Β͍ʮҼՌਪʯσʔλ൙ཞ࣌ ͷࡢࠓͰͱͯେࣄͳڭཆ
ҼՌɾ૬ؔؔΛͲ͏அ͢Δ͔
ͭͷνΣοΫϙΠϯτ ɾʮ·ͬͨ͘ͷۮવʯͰͳ͍͔ ɾʮୈͷมʯଘࡏ͍ͯ͠ͳ͍͔ ɾʮٯͷҼՌؔʯଘࡏ͍ͯ͠ͳ͍͔ ͜ΕΒΛٙ͏͜ͱ͕େࣄ
ʮ·ͬͨ͘ͷۮવʯͰͳ͍͔ ʮݟ͔͚ͤͷ૬ؔʯͱݺΕΔ
ʮୈͷมʯଘࡏ͍ͯ͠ͳ͍͔ ୈͷมͷ͜ͱΛʮަབྷҼࢠʯͱݺͿ ˠ૬ؔؔʹա͗ͳ͍ͷΛҼՌ͕ؔ͋Δ͔ͷΑ͏ʹݟͤͯ͠·͏ͷͷ͜ͱ
ʮٯͷҼՌؔʯଘࡏ͍ͯ͠ͳ͍͔ ݪҼͱࢥ͍ͬͯͨͷ͕࣮݁ՌͰɺ݁ՌͰ͋Δͱࢥ͍ͬͯͨ ͷ͕࣮ݪҼͰ͋Δঢ়ଶ ˠܯͷଟ͍ҬͰ൜ࡑͷൃੜ͕݅ଟ͍ɻ ͕ɺ͜Ε൜ࡑ͕ଟ͍Ҭ͔ͩΒଟ͘ͷܯΛஔ͍ͯ͠Δ ͱߟ͑Δํ͕ཧʹ͔ͳ͍ͬͯΔɻ ʢ൜ࡑ͕ݪҼˠܯ͕݁Ռʣ
ҼՌؔΛূ໌͢Δʹʁ
ࣄ࣮ͷ݁ՌΛΔ͜ͱ͕ॏཁ ࣄ࣮ͱʮԾʹ˓˓͠ͳ͔ͬͨΒͲ͏ͳ͍͔ͬͯͨʯͱ͍͏ɺ ࣮ࡍʹى͜Βͳ͔ͬͨʮͨΒɾΕʯͷγφϦΦͷ͜ͱ ˠҼՌؔΛূ໌͢ΔʹݪҼ͕ىͬͨ͜ͱ͍͏ʮࣄ࣮ʯʹ ͓͚Δ݁ՌͱɺݪҼ͕ى͜Βͳ͔ͬͨͱ͍͏ʮࣄ࣮ʯʹ͓͚Δ ݁ՌΛൺֱ͢Δඞཁ͕͋Δɻ
ྫ͑ ࠂΛग़ͯ͠ച্͕લಉظൺͰ্͕ͬͨͱ͢Δɻ ͜͜Ͱࠂͱച্ͷҼՌ͕ؔ͋Δ͔Ͳ͏͔ΔʹͲ͏͢Εྑ͍͔ʁ
ྫ͑ ࠂΛग़ͯ͠ച্͕લಉظൺͰ্͕ͬͨͱ͢Δɻ ͜͜Ͱࠂͱച্ͷҼՌ͕ؔ͋Δ͔Ͳ͏͔ΔʹͲ͏͢Εྑ͍͔ʁ λΠϜϚγϯΛ͓͑L
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ͕ɺ͜ͷ࣌͝ੈλΠϜϚγϯ ͍ͮΒ͍
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ͡Ό͋Ͳ͏͢Δ͔
ྫ͑ ࠂΛग़ͨ݁͠ՌΛ֬ೝ ͨ͋͠ͱʹաڈʹΓɺ ࠂΛग़͞ͳ͔ͬͨ݁Ռ ֬ೝ͢Δ͜ͱͰɺҼՌ ޮՌΛଌΔ͜ͱ͕Մೳ ࣄ࣮Λ ʮͬͱΒ͍͠ʯ Ͱ݀ຒΊ͢Δ
ࣄ࣮ͷ݀ຒΊ ྫ͑ళฮΛࠂ͋Γάϧʔϓͱࠂͳ͠άϧʔϓʹ͚ͯɺ ࠂ͋Γάϧʔϓͷࣄ࣮Λࠂͳ͠άϧʔϓͷࣄ࣮Ͱ݀ຒΊ͢Δ
ࣄ࣮ͷ݀ຒΊ ྫ͑ళฮΛࠂ͋Γάϧʔϓͱࠂͳ͠άϧʔϓʹ͚ͯɺ ࠂ͋Γάϧʔϓͷࣄ࣮Λࠂͳ͠άϧʔϓͷࣄ࣮Ͱ݀ຒΊ͢Δ ˞ҙ˞ ͭͷάϧʔϓ͕౷ܭతʹࣅ௨͓ͬͯΓɺ།ҰҟͳΔ͕ ʮࠂΛग़͔ͨ͠Ͳ͏͔ʯ ͚ͩͰ͋Ε͜ͷάϧʔϓʮൺֱՄೳʯͱஅͰ͖ɺ ࣄ࣮ͷ݀ຒΊ͕ՄೳʹͳΔ
ຊʹͬͯ ҼՌؔΛূ໌͢Δʹʁ
ҼՌؔΛূ໌͢Δʹ ʮൺֱՄೳͳάϧʔϓΛ࡞Γग़͠ɺࣄ࣮ΛͬͱΒ͠ ͍Ͱஔ͖͑Δʯ͜ͱ͕ඞཁ ͕ͩʮൺֱՄೳͳάϧʔϓʯΛ࡞Δͷ༰қͰͳ͍ɻ ˠ͜ͷάϧʔϓΛ࡞Δख๏͕͍͔ͭ͘ଘࡏ͢Δ
ҼՌਪͷख๏ ɾϥϯμϜԽൺֱࢼݧ ˠ࠷࣮֬ͰೃછΈͷ͋Δํ๏͕ͩɺൺֱՄೳͳάϧʔϓʹ ɹɹ͚Δͷ͕͘͠ηϨΫγϣϯόΠΞε͕͔͔ΔՄೳੑɻ ɾସख๏ͱͯ͠ʮࣗવੳʯʮࠩͷࠩੳʯʮϚονϯάੳʯ ʮճؼੳʯͳͲ͕͋ͬͨΓ͢Δɻ
ҼՌਪͷख๏ ɾϥϯμϜԽൺֱࢼݧ ˠ࠷࣮֬ͰೃછΈͷ͋Δํ๏͕ͩɺൺֱՄೳͳάϧʔϓʹ ɹɹ͚Δͷ͕͘͠ηϨΫγϣϯόΠΞε͕͔͔ΔՄೳੑɻ ɾସख๏ͱͯ͠ʮࣗવੳʯʮࠩͷࠩੳʯʮϚονϯάੳʯ ʮճؼੳʯͳͲ͕͋ͬͨΓ͢Δɻ ͍Ζ͍Ζ͋ΔͷͰ ؾʹͳͬͨਓௐͯΈͯͶʙ
·ͱΊ
·ͱΊ ɾࡢࠓͷใࣾձʹ͓͍ͯɺσʔλ͔Βਖ਼͍͠அ͕Ͱ͖ΔΑ͏ ɹʹ͢ΔͨΊʹ૬ؔؔɾҼՌؔΛཧղ͓ͯ͘͠ͷେʂ ɹʢ57ͱ͔ωοτʹո͍͠ਤɾσʔλͱ͔ଟ͍ͷͰʜʣ ɾͪΖΜɺࣄʹ͓͍ͯࢪࡦͷޮՌݕূΛਖ਼͘͠ߦ͏ͨΊ ɹʹɺҼՌਪॏཁʂ
͓ΘΓʂ