Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MySQLで高トラフィックに立ち向かう
Search
takashabe
January 15, 2015
Technology
0
1.8k
MySQLで高トラフィックに立ち向かう
社内LT大会#2で話した内容です。
takashabe
January 15, 2015
Tweet
Share
More Decks by takashabe
See All by takashabe
より良いターミナルでの生活を求めて
takashabe
0
55
OpenCensusでcustom context propagationとexporterを書いた話 / OpenCensus with custom context propagation and exporter
takashabe
0
1.8k
pubsub with concurrent
takashabe
1
920
社内ISUCONを開催した話
takashabe
0
1.7k
ISUCON大反省会
takashabe
0
1.9k
gitのブランチ戦略
takashabe
8
6k
サルでもわかるgit
takashabe
0
1.5k
playで複数DBする
takashabe
0
1.6k
GitHubの良さ
takashabe
2
2.2k
Other Decks in Technology
See All in Technology
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
280
[re:Inent2025事前勉強会(有志で開催)] re:Inventで見つけた人生をちょっと変えるコツ
sh_fk2
2
1.3k
累計5000万DLサービスの裏側 – LINEマンガのKotlinで挑む大規模 Server-side ETLの最適化
ldf_tech
0
190
技術の総合格闘技!?AIインフラの現在と未来。
ebiken
PRO
0
140
20251106 Offers DeepDive 知識を民主化!あらゆる業務のスピードと品質を 改善するためのドキュメント自動更新・活用術
masashiyokota
1
210
戦えるAIエージェントの作り方
iwiwi
22
11k
データとAIで明らかになる、私たちの課題 ~Snowflake MCP,Salesforce MCPに触れて~ / Data and AI Insights
kaonavi
0
330
GPUをつかってベクトル検索を扱う手法のお話し~NVIDIA cuVSとCAGRA~
fshuhe
0
380
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
1.1k
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.8k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
430
AIエージェントは「使う」だけじゃなくて「作る」時代! 〜最新フレームワークで楽しく開発入門しよう〜
minorun365
PRO
5
950
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
650
Writing Fast Ruby
sferik
630
62k
Unsuck your backbone
ammeep
671
58k
GitHub's CSS Performance
jonrohan
1032
470k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
How to Think Like a Performance Engineer
csswizardry
27
2.2k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Site-Speed That Sticks
csswizardry
13
940
Music & Morning Musume
bryan
46
6.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Transcript
MySQLで高トラフィックに立ち向かう LT大会#2 Takashi Abe Mynet Inc. 01/15 2015
前提 InnoDB MySQL以外の話もちょっとします 特定のサービス特性にフォーカスするものではありま せんが、ソーシャルゲームをベースにして話します
DBサーバへのトラフィック 参照系クエリ select 更新系クエリ insert, update, delete
よくある最小構成
参照系への負荷対策
スケールアップ 金の弾丸 ioDrive
スケールアウト スレーブの追加 MySQLのレプリケーション機能でマスタのデータを複製する キャッシュレイヤの追加 memcached, RedisなどのKVSを利用する 参照性能はRDBに比べて桁違いに良い 参照頻度の高いデータをメインにキャッシュに乗せる カードステータスなどのマスタデータ ユーザのニックネーム
スケールアウトした構成
更新系への負荷対策
スケールアップ 金の弾丸 ioDrive メモリガン積み インメモリならioDriveと同等以上の性能が出る Amazon RDSの場合最大244GBまで拡張可能
スケールアウト マスタの分割 DB、テーブルを複数サーバに分割し、クエリに応じて 動的に問合せ先サーバを選択する 分割方式より垂直分割/水平分割がある アプリケーション側での実装が多い
垂直分割
垂直分割 関係性の薄いデータをそれぞれ異なるDBに分散 接続先DBを変えるだけなので大して実装コストはそれ ほどない、はず (例) ユーザデータ系 ログ系 マスタデータ系
垂直分割イメージ
水平分割
水平分割 複数サーバで同じDBを用意し、キーとなるデータによっ て格納先を分割する DB名から一意に格納先のテーブルを特定出来ないの でサーバ振り分けの実装が重くなりがち キーの余剰、ハッシュ値などによって分割を行う
水平分割 分割例 userテーブル、user_idをキーにして分割する user_idを100で割った余剰をテーブル名のサフィック スにする user_00 ~ user_99のテーブルに分割可能 サーバA: user_00
~ user_49 サーバB: user_50 ~ user_99
水平分割イメージ
スケールアウトした構成
分割するタイミング 設計、制約がきついため途中から分割しようとするのは つらい スモールスタートする場合、最初から分割しておいて分 割された各DBを1台に格納しておく戦略もアリ 分割されてさえいれば、後から別サーバに乗せること も容易になる
注意点 異なるDBに格納されるのでjoinが使えなくなる 水平分割の場合 分割すればするほどパフォーマンス低下 串刺しで検索したい時など トランザクションが煩雑になる
まとめ
参照系 マスタスレーブ+KVSの鉄板構成 後からでもスケールアウトは比較的容易 更新系 垂直、水平分割でマスタへのトラフィックを分散させる 後からスケールアウトするのがつらいのでプロジェク トの始めに方針を検討する