Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ・ドリブン7ヶ条
Search
takashiyan
October 25, 2018
Business
1
110
データ・ドリブン7ヶ条
takashiyan
October 25, 2018
Tweet
Share
Other Decks in Business
See All in Business
M3 Career Culture Deck(セールス&コンサルティング職)
m3c
1
230k
三井物産グループのデジタル証券〜三井物産グループのデジタル証券〜三重・イオンタウン鈴鹿〜徹底解説セミナースライド(20241023)
c0rp_mdm
0
1.7k
Sales Marker Culture Book(English)
salesmarker
PRO
1
2.5k
Crisp Code inc. | わたしたちの事例/実績 - Portfolio
so_kotani
1
600
アルプ株式会社/会社紹介資料
alpinc
0
160
ラシン株式会社 会社説明資料 / 「真剣勝負をしませんか?」
20150817
0
430
HRBP&RPOのご紹介
masakisukeda
0
520
AnyMind Group Company Deck (JP)
anymind
2
100k
リクルートブック(HP掲載)
vantage
0
710
生成AIによる業務利活用アプリを、部門横断チームが3日でPoCを作ってみた!
yukiogawa
0
230
We Are PdE!! 〜高価値なプロダクトを作れるようになるための勉強会〜
leveragestech
1
460
株式会社スピークバディ 会社紹介資料
speakbuddy
1
210k
Featured
See All Featured
Unsuck your backbone
ammeep
668
57k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Building Adaptive Systems
keathley
38
2.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
26
5.2k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
46
2.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
The Cost Of JavaScript in 2023
addyosmani
45
6.6k
Teambox: Starting and Learning
jrom
132
8.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
800
Transcript
データ・ドリブン7ヶ条 朝山高至
データ・ドリブンPDCAの流れ ~仮説起点~ 仮説を発見する (ユーザビリティテスト、ユーザーエク スプローラー、 TTP) 仮説を裏付ける データを見つける 施策に落とし込む テストの実施 テストの結果データ
から新たな仮説を得 る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブンPDCAの流れ ~ファクト起点~ ファクト (課題事実) を発見する ファクトを元に仮説を 作る 施策に落とし込む テストの実施 テストの結果データ から新たな仮説を得
る 仮説を支えるインサ イトを発見する (ユーザビリティテストとか)
データ・ドリブン7ヶ条
①思い込まずにデータを見てみる ②収集できてない必要データに気づく ③仮説と指標を持ってデータを見てみる ④バイアスの少ない解釈をする ⑤データをデザインして認知負担を減らす ⑥データを介したコミュニケーションをする ⑦データは意思決定のための材料 データ・ドリブン7ヶ条
①思い込まずにデータを見てみる データのない仮説は施策の成功確率が低い 主観や思い込みで意思決定をしない →仮説アイディアができたら、それを裏付けるデータを見てみる 例) 仮説アイディア:お気に入り一覧への導線に気づいていないのではないか データ :お気に入り一覧ページ導線のCTRを見てみる
②収集できてない必要データに気づく 自分でデータを見ることを心がけてみると、見たいのに取得できていないデータに気づく ➜取得したデータがとれるように開発を依頼する ➜GAやGTMで簡単に取得できる場合もある 例)スクロール計測、クリックイベント計測、コンテンツグループディメンションなど
③仮説と指標を持ってデータを見てみる 闇雲にデータを見まくる、必要のないデータを取得しようとする ➜時間がかかるのに、改善策に繋がるファクトやインサイトが見つからない ・仮説 ・検証したい指標 を明確化してからデータを見ると気づきが生まれやすい
④バイアスの少ない解釈をする ・データから見当違いな仮説を導き出してしまう ・労力をかけた施策の効果検証時にバイアスのかかった解釈をしてしまう ➜改善につながらない、KPIが悪化する ➜ユーザビリティテストなどで定性的な検証もすることで精度の高い仮説になる ➜工数のかかった施策の検証ほど公平に見る
⑤データをデザインして認知負担を減らす 認知負担がかからないデザインにすることで、 ・大事な変化に気づく ・チームメンバーに伝えたいメッセージが伝わる
⑤データをデザインして認知負担を減らす ×Badな例 縦軸が左右に二軸あり、どの軸がどのグラフを表してるのか直感的にわかりにくい
⑤データをデザインして認知負担を減らす ◦Betterな例 2つのグラフに分けてれば、認 知的負担を抑える事が出来る
⑥データを介したコミュニケーションをする 「コミュニケーションまでがセットでデータ分析」 据え置きのダッシュボードとかGAに見に行く感じだと、 せっかくデータがあっても チーム内でデータについて会話が発生しづらい。 重要指標が自動でオープンな環境で共有されるとコミュニケーションが生まれる ➜他の人がどうやってデータを見てるのかの勉強にもなる
⑦データは意思決定のための材料 ・データ分析自体が楽しくなっちゃう 飛距離を伸ばす目的でウェイトトレーニングをする野球選手 →ウェイト自体が楽しくなってボディビルダーになっちゃう
⑦データは意思決定のための材料 ・データはあくまで改善施策を見つけるための材料 ➜改善することが目的であることを忘れない