Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: soft-DTW
Search
takoika
October 18, 2017
Science
1
4.2k
論文紹介: soft-DTW
takoika
October 18, 2017
Tweet
Share
More Decks by takoika
See All by takoika
論文紹介: Communication-Efficient Learning of Deep Networks from Decentralized Data
takoika
0
2.6k
SKIP-GRAPH: LEARNING GRAPH EMBEDDINGS WITH AN ENCODER-DECODER MODEL
takoika
1
3.8k
論文紹介 Generative Adversarial Imitation Learning
takoika
5
3.3k
Other Decks in Science
See All in Science
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
Ignite の1年間の軌跡
ktombow
0
160
機械学習 - SVM
trycycle
PRO
1
910
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1.1k
Machine Learning for Materials (Challenge)
aronwalsh
0
350
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
140
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
960
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
310
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
110
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
390
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.5k
Featured
See All Featured
Statistics for Hackers
jakevdp
799
220k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Thoughts on Productivity
jonyablonski
70
4.9k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
KATA
mclloyd
PRO
32
15k
Site-Speed That Sticks
csswizardry
13
920
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
Soft-DTW: a Differentiable Loss Function for Time-Series Marco Cuturi and
Mathieu Blondel presenter: Takeshi Oura
アジェンダ • Soft-DTW: a Differentiable Loss Function for Time-Series Marco
Cuturi and Mathieu Blondel • DTW(dynamic time warping)とは • 2つの時系列を⽐較する指標(時系列間の差、違い) • 時系列の⻑さの違い、伸び、縮みを吸収する • 時系列予測のロス関数として使⽤できる • soft-DTW • 微分可能なDTW • 勾配計算アルゴリズムの提案 • 評価 • 複数時系列の平均 • k-means • 時系列識別問題 • 時系列予測
DTW • ⻑さn,mの2つの時系列 " , {" } • 誤差関数 ("
, ) ) • すべての時刻の誤差ペア ∆= (" , " ) ",) • A: アライメント⾏列(どの時刻ペ アを結びつけるかを表現) ",) = 1 ∶ とを対応付ける ",) = 0 ∶ とは対応付けない • = min 9 (, ∆) : DTWは, ∆の内積、最⼩の誤差 https://www.psb.ugent.be/cbd/papers/gentxwarper/ DTWalgorithm.htm) (https://izbicki.me/blog/converting-images-into-time- series-for-data-mining.html,
DTWのフォワード計算 • ()
soft-DTW • DTW: = min 9 (, ∆) • soft-DTW:
= = > @(9,A)/= 9 • ⟶ 0:DTWに対応(最適Aのみの寄与) • DTWと同様に計算可能(()) min ("@H,) , ",)@H , "@H,)@H )を−log (@MNOP,Q/= + @MN,QOP/= + @MNOP,QOP/=)にす ればよい
soft-DTWの勾配計算(バックワード) • T = U∆ UT V • ",) =
UMX,Y UMN,Q • いかにUMX,Y UMN,Q を計算するか? アイデア: Z,[ (DTWの値)の偏微分は(i-1,j),(i,j-1),(i-1,j-1)のみに依存 • ",) は上式で再帰的に計算 • ",) = " , " + min = {"@H,) , ",)@H , "@H,)@H } から上式右辺の微分は計算可能
soft-DTWの勾配計算(バックワード) • () フォワード バックワード
soft-DTWの評価 • 仮説: 直接DTWを最⼩化するよりsoft-DTWを最⼩化するほうが (DTWを)最⼩化するうえで優れている • soft-DTWの性質 • = 0:
⾮凸関数(最適化の際ローカルミニマムにつかまる) • ⟶ ∞: 凸関数に近付く • による凸緩和でより最適化されるか? • ⽐較⼿法 • DBA: GAと局所最適化を交互に使⽤しDTWを直接最適化(Patitjean et. al. 2011) • 劣勾配法: 劣勾配でDTWを最適化 • データセット • UCR(University of California, Riverside) time series
複数時系列の平均 • タスク: (⻑さが違う)複数時系列データ{" }の平均 (最適化問題として定式化) min T > "
" (, " ) " • " : あらかじめ" : 時系列の⻑さ( ∝ " なので正規化として) • 与えられる重み • 評価: soft-DTWで最⼩化しDTWの値で⽐較 • 結果: ⟶ 0でDTWに漸近 性能もよくなる soft-DTWがより最適 なサンプルの割合
k-means • 距離としてDTW(soft-DTW)を⽤いたk-means soft-DTWがより最適 なサンプルの割合
時系列の識別問題 • はチューニング⽤データセットで選択 • 75%のサンプルでDBAとsoft-DTWの精度が同じ直線より上 → soft-DTWがDBAを上回る精度 各プロット: サンプル x軸:
DBAでのAccuracy y軸: soft-DTWでのAccuracy
時系列予測 • インプット: = 1, . . , まで •
アウトプット(予測): = + 1, . . , + • c : パラメータで指定される関数 • ロス関数: min c ∑ (c " H,..,V , " VfH,..,VfZ) " • : サンプルインデックス • 実験: • 時系列の60%,40%: インプット、アウトプット • MLPで評価 (RNNも実験したがMLPより向上しなかった)
まとめ • 微分可能なDTWとその計算アルゴリズムの提案 • フォワード、バックワード: () • 凸緩和することで、解きやすい最適化関数のクラスにできる • DTWを最適化する複数のベンチマーク:
• soft-DTWを⽤い勾配法での評価 • DTWを直接最適化する他アルゴリズムに対する優位性を⽰した