Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介: soft-DTW
Search
takoika
October 18, 2017
Science
1
4.1k
論文紹介: soft-DTW
takoika
October 18, 2017
Tweet
Share
More Decks by takoika
See All by takoika
論文紹介: Communication-Efficient Learning of Deep Networks from Decentralized Data
takoika
0
2.5k
SKIP-GRAPH: LEARNING GRAPH EMBEDDINGS WITH AN ENCODER-DECODER MODEL
takoika
1
3.8k
論文紹介 Generative Adversarial Imitation Learning
takoika
5
3.3k
Other Decks in Science
See All in Science
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1k
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
180
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
270
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
390
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
130
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
220
学術講演会中央大学学員会府中支部
tagtag
0
260
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
480
機械学習 - SVM
trycycle
PRO
1
810
Introd_Img_Process_2_Frequ
hachama
0
550
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.5k
統計学入門講座 第2回スライド
techmathproject
0
130
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Cost Of JavaScript in 2023
addyosmani
50
8.3k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Faster Mobile Websites
deanohume
307
31k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Agile that works and the tools we love
rasmusluckow
329
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
GitHub's CSS Performance
jonrohan
1031
460k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Transcript
Soft-DTW: a Differentiable Loss Function for Time-Series Marco Cuturi and
Mathieu Blondel presenter: Takeshi Oura
アジェンダ • Soft-DTW: a Differentiable Loss Function for Time-Series Marco
Cuturi and Mathieu Blondel • DTW(dynamic time warping)とは • 2つの時系列を⽐較する指標(時系列間の差、違い) • 時系列の⻑さの違い、伸び、縮みを吸収する • 時系列予測のロス関数として使⽤できる • soft-DTW • 微分可能なDTW • 勾配計算アルゴリズムの提案 • 評価 • 複数時系列の平均 • k-means • 時系列識別問題 • 時系列予測
DTW • ⻑さn,mの2つの時系列 " , {" } • 誤差関数 ("
, ) ) • すべての時刻の誤差ペア ∆= (" , " ) ",) • A: アライメント⾏列(どの時刻ペ アを結びつけるかを表現) ",) = 1 ∶ とを対応付ける ",) = 0 ∶ とは対応付けない • = min 9 (, ∆) : DTWは, ∆の内積、最⼩の誤差 https://www.psb.ugent.be/cbd/papers/gentxwarper/ DTWalgorithm.htm) (https://izbicki.me/blog/converting-images-into-time- series-for-data-mining.html,
DTWのフォワード計算 • ()
soft-DTW • DTW: = min 9 (, ∆) • soft-DTW:
= = > @(9,A)/= 9 • ⟶ 0:DTWに対応(最適Aのみの寄与) • DTWと同様に計算可能(()) min ("@H,) , ",)@H , "@H,)@H )を−log (@MNOP,Q/= + @MN,QOP/= + @MNOP,QOP/=)にす ればよい
soft-DTWの勾配計算(バックワード) • T = U∆ UT V • ",) =
UMX,Y UMN,Q • いかにUMX,Y UMN,Q を計算するか? アイデア: Z,[ (DTWの値)の偏微分は(i-1,j),(i,j-1),(i-1,j-1)のみに依存 • ",) は上式で再帰的に計算 • ",) = " , " + min = {"@H,) , ",)@H , "@H,)@H } から上式右辺の微分は計算可能
soft-DTWの勾配計算(バックワード) • () フォワード バックワード
soft-DTWの評価 • 仮説: 直接DTWを最⼩化するよりsoft-DTWを最⼩化するほうが (DTWを)最⼩化するうえで優れている • soft-DTWの性質 • = 0:
⾮凸関数(最適化の際ローカルミニマムにつかまる) • ⟶ ∞: 凸関数に近付く • による凸緩和でより最適化されるか? • ⽐較⼿法 • DBA: GAと局所最適化を交互に使⽤しDTWを直接最適化(Patitjean et. al. 2011) • 劣勾配法: 劣勾配でDTWを最適化 • データセット • UCR(University of California, Riverside) time series
複数時系列の平均 • タスク: (⻑さが違う)複数時系列データ{" }の平均 (最適化問題として定式化) min T > "
" (, " ) " • " : あらかじめ" : 時系列の⻑さ( ∝ " なので正規化として) • 与えられる重み • 評価: soft-DTWで最⼩化しDTWの値で⽐較 • 結果: ⟶ 0でDTWに漸近 性能もよくなる soft-DTWがより最適 なサンプルの割合
k-means • 距離としてDTW(soft-DTW)を⽤いたk-means soft-DTWがより最適 なサンプルの割合
時系列の識別問題 • はチューニング⽤データセットで選択 • 75%のサンプルでDBAとsoft-DTWの精度が同じ直線より上 → soft-DTWがDBAを上回る精度 各プロット: サンプル x軸:
DBAでのAccuracy y軸: soft-DTWでのAccuracy
時系列予測 • インプット: = 1, . . , まで •
アウトプット(予測): = + 1, . . , + • c : パラメータで指定される関数 • ロス関数: min c ∑ (c " H,..,V , " VfH,..,VfZ) " • : サンプルインデックス • 実験: • 時系列の60%,40%: インプット、アウトプット • MLPで評価 (RNNも実験したがMLPより向上しなかった)
まとめ • 微分可能なDTWとその計算アルゴリズムの提案 • フォワード、バックワード: () • 凸緩和することで、解きやすい最適化関数のクラスにできる • DTWを最適化する複数のベンチマーク:
• soft-DTWを⽤い勾配法での評価 • DTWを直接最適化する他アルゴリズムに対する優位性を⽰した