Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
音声認識と音声合成の超入門
Search
Akira Tamamori
June 16, 2023
Technology
0
430
音声認識と音声合成の超入門
音響学入門ペディアを参考に
Akira Tamamori
June 16, 2023
Tweet
Share
More Decks by Akira Tamamori
See All by Akira Tamamori
音声情報処理に便利な (Python) パッケージやソフトウェア
tam17aki
3
820
Tokyo BISH Bash #02 音声情報処理と音声変換技術入門
tam17aki
2
2.1k
[ICASSP2020音響音声読み会] State-Space Gaussian Process for Drift Estimation in Stochastic Differential Equations
tam17aki
0
530
Other Decks in Technology
See All in Technology
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
200
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1k
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
AIチャットボット開発への生成AI活用
ryomrt
0
170
フルカイテン株式会社 採用資料
fullkaiten
0
40k
The Role of Developer Relations in AI Product Success.
giftojabu1
0
120
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Docker and Python
trallard
40
3.1k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Building Adaptive Systems
keathley
38
2.3k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Unsuck your backbone
ammeep
668
57k
Code Review Best Practice
trishagee
64
17k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Documentation Writing (for coders)
carmenintech
65
4.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Transcript
音声認識
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 てんきははれ 天気は晴れ てんきわはれ 点 際 晴れ てんきはれい
天気は例 「天気は晴れ」 コンピュータくん
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 • 音の知識のイメージ ◦ 「あ」の音はこんな波形、「サッカー」という音はこんな波形、、、 ◦ 人間は「あ」という音を聞いたら、「これは”あ”という音だな」と分かる ⇒人間は「あ」という音がどんな波形であるかの知識を持っている
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 • 言語の知識のイメージ ◦ 文字や単語の並びが自然かどうかを判断する知識 「彼は晩ごはんに焼き肉を食べました」 ⇐自然 「彼は晩ごはんにサッカーを食べました」 ⇐不自然 →焼き肉が食べ物でサッカーが食べ物ではない、という知識を人間が持っているか
らこそ、自然かどうかを判断できる
音声合成
音声合成 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、テキストから音声を合成する技術」 動詞、名詞、形 容詞… コンピュータくん 「天気は晴れ」 てんきははれ ten-ki-wa-hare アクセント、
イントネーション
超簡易版 音声合成の歴史 • ルールベース(職人芸):フォルマント合成(1990年以前) ◦ 手動ルールによる各音素(/a/や/k/など)の素片を構築 ◦ e.g., AquesTalk(いわゆる「ゆっくりボイス」) • コーパスベース:波形接続型音声合成(1990年〜)
◦ 音声データベースから音声素片を接続し合成 ◦ e.g., ボーカロイド • コーパスベース:統計的パラメトリック音声合成(1995年〜) ◦ 音声データベースから統計的に音声を予測し合成 ◦ 隠れマルコフモデル/深層学習による音声合成 ◦ e.g. CeVIO 参考 https://www.sp.nitech.ac.jp/~tokuda/tokuda_ongaku2013.pdf
統計的音声合成の概要 出典『音響学入門ペディア』(コロナ社)