Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
音声認識と音声合成の超入門
Search
Akira Tamamori
June 16, 2023
Technology
0
480
音声認識と音声合成の超入門
音響学入門ペディアを参考に
Akira Tamamori
June 16, 2023
Tweet
Share
More Decks by Akira Tamamori
See All by Akira Tamamori
音声情報処理に便利な (Python) パッケージやソフトウェア
tam17aki
3
920
Tokyo BISH Bash #02 音声情報処理と音声変換技術入門
tam17aki
2
2.2k
[ICASSP2020音響音声読み会] State-Space Gaussian Process for Drift Estimation in Stochastic Differential Equations
tam17aki
0
570
Other Decks in Technology
See All in Technology
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
0
160
FinOps について (ちょっと) 本気出して考えてみた
skmkzyk
0
210
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
130
AI時代におけるデータの重要性 ~データマネジメントの第一歩~
ryoichi_ota
0
710
ソフトウェアエンジニアの生成AI活用と、これから
lycorptech_jp
PRO
0
900
JSConf JPのwebsiteをGatsbyからNext.jsに移行した話 - Next.jsの多言語静的サイトと課題
leko
2
180
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
380
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
1
170
MCP ✖️ Apps SDKを触ってみた
hisuzuya
0
360
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
200
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
13
10k
ソースを読むプロセスの例
sat
PRO
15
9.9k
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Into the Great Unknown - MozCon
thekraken
40
2.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
GraphQLとの向き合い方2022年版
quramy
49
14k
BBQ
matthewcrist
89
9.9k
It's Worth the Effort
3n
187
28k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Making Projects Easy
brettharned
120
6.4k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Embracing the Ebb and Flow
colly
88
4.9k
The Invisible Side of Design
smashingmag
302
51k
Transcript
音声認識
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 てんきははれ 天気は晴れ てんきわはれ 点 際 晴れ てんきはれい
天気は例 「天気は晴れ」 コンピュータくん
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 • 音の知識のイメージ ◦ 「あ」の音はこんな波形、「サッカー」という音はこんな波形、、、 ◦ 人間は「あ」という音を聞いたら、「これは”あ”という音だな」と分かる ⇒人間は「あ」という音がどんな波形であるかの知識を持っている
音声認識 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、音声を自動でテキスト化する技術」 • 言語の知識のイメージ ◦ 文字や単語の並びが自然かどうかを判断する知識 「彼は晩ごはんに焼き肉を食べました」 ⇐自然 「彼は晩ごはんにサッカーを食べました」 ⇐不自然 →焼き肉が食べ物でサッカーが食べ物ではない、という知識を人間が持っているか
らこそ、自然かどうかを判断できる
音声合成
音声合成 「コンピュータが、自身の脳の中にある音の知識と 言語の知識を駆使して、テキストから音声を合成する技術」 動詞、名詞、形 容詞… コンピュータくん 「天気は晴れ」 てんきははれ ten-ki-wa-hare アクセント、
イントネーション
超簡易版 音声合成の歴史 • ルールベース(職人芸):フォルマント合成(1990年以前) ◦ 手動ルールによる各音素(/a/や/k/など)の素片を構築 ◦ e.g., AquesTalk(いわゆる「ゆっくりボイス」) • コーパスベース:波形接続型音声合成(1990年〜)
◦ 音声データベースから音声素片を接続し合成 ◦ e.g., ボーカロイド • コーパスベース:統計的パラメトリック音声合成(1995年〜) ◦ 音声データベースから統計的に音声を予測し合成 ◦ 隠れマルコフモデル/深層学習による音声合成 ◦ e.g. CeVIO 参考 https://www.sp.nitech.ac.jp/~tokuda/tokuda_ongaku2013.pdf
統計的音声合成の概要 出典『音響学入門ペディア』(コロナ社)