Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AtCoder AGC 001 B - Mysterious Light 考察と実装
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
task4233
February 07, 2019
Programming
0
550
AtCoder AGC 001 B - Mysterious Light 考察と実装
AGC001-B Mysterious LightのEditorialの理解の足しになるように, という思いで作成しました.
task4233
February 07, 2019
Tweet
Share
More Decks by task4233
See All by task4233
pprof vs runtime/trace (FlightRecorder)
task4233
0
320
embedパッケージを深掘りする / Deep Dive into embed Package in Go
task4233
2
620
GC24 Recap: Interface Internals
task4233
1
750
GopherCon 2024 Recap: Exploring the Go Compiler: Adding a "four" loop / 構文追加で学ぶGoコンパイラの処理
task4233
0
740
Goのデバッグ用ロガーの開発を通して得た デバッグとgoパッケージに関する知見/Knowledge by given implementation of logger for debug
task4233
0
590
入門XSS / Introduction of XSS
task4233
3
3k
脆弱性スキャナのOWASP ZAPを コードベースで扱ってみる / OWASP ZAP on a code base
task4233
2
3.3k
誘導を読み取って1ステップ上の問題を解けるようになろう/Tips for Solving CTF with Reading Leads
task4233
1
970
JavaScriptはなぜシングルスレッドでも非同期処理ができるのか/Why Can JavaSctipt Invoke Asynchronous in Single Thread?
task4233
24
22k
Other Decks in Programming
See All in Programming
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
210
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
300
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
220
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
React Native × React Router v7 API通信の共通化で考えるべきこと
suguruooki
0
100
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
210
Package Management Learnings from Homebrew
mikemcquaid
0
230
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
100
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
460
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
610
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
How to train your dragon (web standard)
notwaldorf
97
6.5k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
440
Into the Great Unknown - MozCon
thekraken
40
2.3k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
How to make the Groovebox
asonas
2
1.9k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Crafting Experiences
bethany
1
50
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Accessibility Awareness
sabderemane
0
56
Transcript
AGC001-B 考察と実装 @task4233
もくじ 1. 概要 2. 考察 3. 実装 4. まとめ 2
1. 概要 ・1辺の長さがNの正三角形abcがある. ・不思議な光は, 自分の軌跡と辺に当たったときに反射する. ・頂点aからXだけ離れた点から辺bcと平行な光を放った時, もう一度その点に戻ってくるまでの軌跡の和を求めよ. 3
2. 考察 問題がよくわからないので, 問題に与えられた図を用いて一般化してみる. 4
N, Xについて一般化(図はN=5, X=2の時のもの) X N X 5
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X 6
N, Xについて一般化(図はN=5, X=2の時のもの) X N N-X X X 7
N, Xについて一般化(図はN=5, X=2の時のもの) X X N-X X 8
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X 9
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X N-X X (N-X)-X 10
N, Xについて一般化(図はN=5, X=2の時のもの) (N-X)-X (N-X)-X (N-X)-X 11
N, Xについて一般化 先ほどまでの図で反射した光に周期性があったことが分かるは ず. その周期性とは以下の3つ. 1. 2回反射した後の領域に, 平行四辺形が出現すること 2. N,
N-Xの後の反射において, 2回ずつ同じ距離を進むこと 3. 出来た平行四辺形の辺が等しい時に, 反射が終わること それぞれ見ていく. 12
2-1. 平行四辺形の出現 右下の図は6枚目のスライドの図である. ここで, 光が2回進むと平行四辺形ができることが分かる. なお, その辺の長さは 前の2つの光の軌跡の距離と一致する. (右の図で言えば, XとN-Xになる)
X N N-X X 13
2-2. 同じ距離の軌跡 右下の図は8枚目のスライドの図である ここで, X->N-Xの軌跡の後に, X->Xのように同じ距離だけ進んでいることが分かるはず. なお, その距離は2-1.で説明した 平行四辺形の辺の最小値である. X
X N-X X 14
2.3. 反射の終了 右下の図は11枚目のスライドの図である ここで, 反射が終了する時, 平行四辺形の2辺が等しく なっていることが分かるはず. ((N-X)-X = (N-X)-Xで等しい)
(N-X)-X (N-X)-X (N-X)-X 15
3. 実装 2.での考察により, 以下のような再帰が書ける. 出来る平行四辺形の2辺をx, y(x < y)とすると, と書ける. 16
3. 実装(C++) 実装すると右のようになる. ※int64_tはlong longでも問題ない しかし, これは制約が なのでTLEになる. そこで, 再帰を簡潔にする.
17
3. 実装 - 高速化(1) 再帰関数をじーっと見ていると, return f(mn, mx-mn) + 2
* mn の部分が無駄に見えてくる. (なぜなら, mx-mnというパラメータの関数を呼び出す度に2*mnを 加算するので, その加算をまとめて[mx/mn]* 2 *mnとすればまと められるから) ※[ ]はガウス記号. 18
3. 実装 - 高速化(2) すると, 先ほどの再帰は以下のように書き直せるはず. なお, y%x=0の式で最後にxを引いているのは, 再帰の終了時に光が平行四辺形の半分だけ進むため. 19
3. 実装 - 高速化(C++) 改めて実装すると 右のようになる. これで通る. 20
4. まとめ ・今回のように, なんとなく再帰らしいことは分かるが, その実装が上手く行かない時は, 実際に図に書き出すと 意外とうまく行くこともある. ・今回の高速化で用いたような, 減算を除算(加算を乗算)でするテクは便利なので, 使えるようになっておくと良いと思う.
21
以上. お疲れ様でした.