Upgrade to Pro — share decks privately, control downloads, hide ads and more …

線形代数学入門講座 第4回スライド

線形代数学入門講座 第4回スライド

てくますプロジェクトで行った線形代数学入門講座の第4回スライドです。
実施:2024/06/03

TechmathProject

September 04, 2024
Tweet

More Decks by TechmathProject

Other Decks in Science

Transcript

  1. 線形代数学 ④置換 置換 𝑛個の文字{1, 2, ⋯ , 𝑛}から{1, 2, ⋯

    , 𝑛}への一対一の対応を𝑛文字の置換といいます。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 は4文字の置換である。 1 1 2 2 3 3 4 4
  2. 線形代数学 ④置換 置換 置換𝜎は、1行目に1, 2, ⋯ , 𝑛を,2行目にσ 1 ,

    𝜎 2 , ⋯ , 𝜎(𝑛)を並べることで 行列のように表します。 また、上下の組み合わせが変わらない限り列を入れ換えて表すことがあり、 動かさない文字は省略して表すことがあります。 (例) 𝜎 1 = 3, 𝜎 2 = 2, 𝜎 3 = 4, 𝜎 4 = 1 で定まる置換𝜎に対して、
  3. 線形代数学 ④置換 様々な置換 ・巡回置換…文字𝑘1 , 𝑘2 , ⋯ , 𝑘𝑟

    のみを𝑘1 → 𝑘2 , 𝑘2 → 𝑘3 , ⋯ , 𝑘𝑟 → 𝑘1 とうつす置換。 (例) これを とも表す。 ・互換…2文字のみを動かす巡回置換。 (例)
  4. 線形代数学 ④置換 巡回置換の積で表示 任意の置換は、使う文字が被らない巡回置換の積で表すことができます。 (例) について考えると、 まず、文字1がどううつっていくか調べる。 1 → 3

    → 6 → 4 → 1となり、この4つの文字は巡回置換 1 3 6 4 で動く。 次に、この4文字以外の文字2がどううつっていくか調べる。 2 → 7 → 2となり、この2つの文字は巡回置換 2 7 で動く。 これを文字を使い切るまで行う。
  5. 線形代数学 ④置換 置換の符号 置換𝜎が𝑚個の互換の積で表されるとき、sgn 𝜎 = (−1)𝑚 を𝜎の符号といいます。 置換の互換の積での表し方は1通りではありませんが、 sgn

    𝜎 は決まります。 (例) について、 なので、 sgn 𝜎 = (−1)4= 1 符号が1である置換を偶置換,符号が-1である置換を奇置換といいます。