Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第5回スライド
Search
TechmathProject
September 04, 2024
Science
0
77
線形代数学入門講座 第5回スライド
てくますプロジェクトで行った線形代数学入門講座の第5回スライドです。
実施:2024/06/17
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第5回スライド
techmathproject
0
39
統計学入門講座 第6回スライド
techmathproject
0
29
統計学入門講座 第7回スライド
techmathproject
0
21
統計学入門講座 第8回スライド
techmathproject
0
23
統計学入門講座 第4回スライド
techmathproject
0
260
統計学入門講座 第3回スライド
techmathproject
0
160
統計学入門講座 第2回スライド
techmathproject
0
260
統計学入門講座 第1回スライド
techmathproject
0
570
線形代数学入門講座 第1回スライド
techmathproject
0
160
Other Decks in Science
See All in Science
Hakonwa-Quaternion
hiranabe
1
160
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
HDC tutorial
michielstock
0
270
(2025) Balade en cyclotomie
mansuy
0
320
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
290
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
440
データマイニング - ノードの中心性
trycycle
PRO
0
320
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Prompt Engineering for Job Search
mfonobong
0
130
Producing Creativity
orderedlist
PRO
348
40k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
How to make the Groovebox
asonas
2
1.8k
How to Ace a Technical Interview
jacobian
281
24k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
73
Design in an AI World
tapps
0
100
Un-Boring Meetings
codingconduct
0
160
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
線形代数学 入門講座 ⑤行列式 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列式の定義 行列式の性質 行列式と正則性 行列式の幾何学的意味
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑤行列式 行列式の定義 𝑛次正方行列𝐴 = (𝑎𝑖𝑗 )に対して、σ𝜎∈𝑆𝑛 sgn(𝜎)𝑎1𝜎(1) 𝑎2𝜎(2) ⋯
𝑎𝑛𝜎(𝑛) を行列式といい、 det(𝐴)や 𝐴 と表します。 𝜎 1 = 4, 𝜎 2 = 2, 𝜎 3 = 1 𝜎 4 = 5, 𝜎 5 = 3 については、 (−1) × 𝑎14 × 𝑎22 × 𝑎31 × 𝑎45 × 𝑎53 これをすべての置換で考えて、和をとる。
線形代数学 ⑤行列式 行列式の計算例 (例) 2次正方行列 𝑎11 𝑎12 𝑎21 𝑎22 の行列式の計算
𝑆2 = 𝜀, (1 2) であり、sgn 𝜀 = 1, sgn 1 2 = −1なので、 𝑎11 𝑎12 𝑎21 𝑎22 = sgn 𝜀 𝑎11 𝑎22 + sgn (1 2) 𝑎12 𝑎21 = 𝑎11 𝑎22 − 𝑎12 𝑎21
線形代数学 ⑤行列式 行列式の計算例 (例) 3次正方行列の行列式の計算 𝑆3 = 𝜀, 1 2
, 2 3 , 3 1 , 1 2 3 , (1 3 2) であり、 sgn 𝜀 = sgn 1 2 3 = sgn((1 3 2)) = 1, sgn 1 2 = sgn 2 3 = sgn((3 1)) = −1なので、 𝑎11 𝑎22 𝑎33 + 𝑎12 𝑎23 𝑎31 + 𝑎13 𝑎21 𝑎32 − 𝑎12 𝑎21 𝑎33 − 𝑎11 𝑎23 𝑎32 − 𝑎13 𝑎22 𝑎31
線形代数学 ⑤行列式 行列式の性質 行列式には次のような性質があります。 (1) 1つの行を𝑐倍すると、行列式は𝑐倍になる。 (2) 2つの行を入れ換えると、行列式は−1倍になる。
線形代数学 ⑤行列式 行列式の性質 (3) 𝑖行目を2つの列ベクトルの和とみなしたとき、その行列式は、 他の行が同じで𝑖行目を各々の列ベクトルにした2つの行列式の和になる。 (4) 1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
線形代数学 ⑤行列式 行列式の性質 (5) 転置行列の行列式は、元の行列の行列式と変わらない。 det(𝑡𝐴) = det(𝐴) (6) 左上と右下を正方行列にブロック分けしたとき左下が零行列なら、
その行列式は、左上と右下の行列式の積になる。 det 𝐴 𝐵 𝑂 𝐷 = det(𝐴)det(𝐷) (7) 2つの行列の積の行列式は、2つの行列の行列式の積になる。 det 𝐴𝐵 = det(𝐴)det(𝐵)
線形代数学 ⑤行列式 行列式の計算方法 行列式の性質を利用すると、定義に戻らず行列式を計算することができます。 行基本変形をして、簡約な行列にします。 ・1つの行を𝑐倍すると、行列式は𝑐倍になる。 (性質(1)) ・2つの行を入れ換えると、行列式は−1倍になる。 (性質(2)) ・1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
(性質(4)) 簡約な行列は上三角行列なので、行列式は性質(6)から対角成分の積になります。
線形代数学 ⑤行列式 行列式と正則性 正方行列𝐴が正則であるかどうかは、行列式で判定することができます。 行列の行基本変形は、変形の前後で「行列式が0であるかどうか」を変えません。 ・𝐴が正則なら簡約化が単位行列になり、行列式は0になりません。 ・𝐴が正則でないなら簡約化の対角成分に0があるので、行列式は0になります。 正方行列𝐴が正則である ⇔ det(𝐴)
≠ 0
線形代数学 ⑤行列式 行列式の幾何学的意味 2次正方行列𝐴の行列式は、𝐴の2つの列ベクトルで張られる平行四辺形の面積に なります。 行ベクトルで張られる平行四辺形の面積も表しています。 𝑥 𝑦 0 𝑎
𝑐 𝑏 𝑑 面積 det 𝑎 𝑏 𝑐 𝑑
線形代数学 ⑤行列式 行列式の幾何学的意味 符号も考慮すると、行列式は1番目のベクトルから2番目のベクトルに向かって 左回りの向きで張られる平行四辺形の向き付き面積に対応します。 𝑛次正方行列についても、𝑛次元の格子の向き付き体積を表しています。 行列式は、微積分でも重積分の変数変換で使います。 「元の変数座標で面積1だった小さな正方形が、新しい変数座標で見たときに どのような面積の平行四辺形になっているか」が計算に必要だからです。 𝑥
𝑦 0 𝑏 𝑑 𝑎 𝑐 このときは det 𝑎 𝑏 𝑐 𝑑 < 0
線形代数学 ⑤行列式 まとめ ・置換を利用して行列式を定義できる。 ・行列式には様々な性質があり、行列式の計算に利用できる。 ・行列の正則性は、行列式が存在して0でないことと同値である。 ・行列式は、𝑛個の列ベクトルが張る𝑛次元格子の向き付き体積を表す。