Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第5回スライド
Search
TechmathProject
September 04, 2024
Science
0
23
線形代数学入門講座 第5回スライド
てくますプロジェクトで行った線形代数学入門講座の第5回スライドです。
実施:2024/06/17
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
52
統計学入門講座 第3回スライド
techmathproject
0
37
統計学入門講座 第2回スライド
techmathproject
0
53
統計学入門講座 第1回スライド
techmathproject
0
180
線形代数学入門講座 第1回スライド
techmathproject
0
44
線形代数学入門講座 第2回スライド
techmathproject
0
36
線形代数学入門講座 第3回スライド
techmathproject
0
24
線形代数学入門講座 第4回スライド
techmathproject
0
21
線形代数学入門講座 第6回スライド
techmathproject
0
24
Other Decks in Science
See All in Science
拡散モデルの原理紹介
brainpadpr
3
5.4k
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
160
WCS-LA-2024
lcolladotor
0
160
小杉考司(専修大学)
kosugitti
2
590
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
120
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.6k
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
210
Introduction to Image Processing: 2.Frequ
hachama
0
370
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
110
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
760
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
150
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
250
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
Designing for humans not robots
tammielis
250
25k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Invisible Side of Design
smashingmag
299
50k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
44
9.4k
Building Applications with DynamoDB
mza
93
6.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Making the Leap to Tech Lead
cromwellryan
133
9k
The Language of Interfaces
destraynor
155
24k
Transcript
線形代数学 入門講座 ⑤行列式 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列式の定義 行列式の性質 行列式と正則性 行列式の幾何学的意味
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑤行列式 行列式の定義 𝑛次正方行列𝐴 = (𝑎𝑖𝑗 )に対して、σ𝜎∈𝑆𝑛 sgn(𝜎)𝑎1𝜎(1) 𝑎2𝜎(2) ⋯
𝑎𝑛𝜎(𝑛) を行列式といい、 det(𝐴)や 𝐴 と表します。 𝜎 1 = 4, 𝜎 2 = 2, 𝜎 3 = 1 𝜎 4 = 5, 𝜎 5 = 3 については、 (−1) × 𝑎14 × 𝑎22 × 𝑎31 × 𝑎45 × 𝑎53 これをすべての置換で考えて、和をとる。
線形代数学 ⑤行列式 行列式の計算例 (例) 2次正方行列 𝑎11 𝑎12 𝑎21 𝑎22 の行列式の計算
𝑆2 = 𝜀, (1 2) であり、sgn 𝜀 = 1, sgn 1 2 = −1なので、 𝑎11 𝑎12 𝑎21 𝑎22 = sgn 𝜀 𝑎11 𝑎22 + sgn (1 2) 𝑎12 𝑎21 = 𝑎11 𝑎22 − 𝑎12 𝑎21
線形代数学 ⑤行列式 行列式の計算例 (例) 3次正方行列の行列式の計算 𝑆3 = 𝜀, 1 2
, 2 3 , 3 1 , 1 2 3 , (1 3 2) であり、 sgn 𝜀 = sgn 1 2 3 = sgn((1 3 2)) = 1, sgn 1 2 = sgn 2 3 = sgn((3 1)) = −1なので、 𝑎11 𝑎22 𝑎33 + 𝑎12 𝑎23 𝑎31 + 𝑎13 𝑎21 𝑎32 − 𝑎12 𝑎21 𝑎33 − 𝑎11 𝑎23 𝑎32 − 𝑎13 𝑎22 𝑎31
線形代数学 ⑤行列式 行列式の性質 行列式には次のような性質があります。 (1) 1つの行を𝑐倍すると、行列式は𝑐倍になる。 (2) 2つの行を入れ換えると、行列式は−1倍になる。
線形代数学 ⑤行列式 行列式の性質 (3) 𝑖行目を2つの列ベクトルの和とみなしたとき、その行列式は、 他の行が同じで𝑖行目を各々の列ベクトルにした2つの行列式の和になる。 (4) 1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
線形代数学 ⑤行列式 行列式の性質 (5) 転置行列の行列式は、元の行列の行列式と変わらない。 det(𝑡𝐴) = det(𝐴) (6) 左上と右下を正方行列にブロック分けしたとき左下が零行列なら、
その行列式は、左上と右下の行列式の積になる。 det 𝐴 𝐵 𝑂 𝐷 = det(𝐴)det(𝐷) (7) 2つの行列の積の行列式は、2つの行列の行列式の積になる。 det 𝐴𝐵 = det(𝐴)det(𝐵)
線形代数学 ⑤行列式 行列式の計算方法 行列式の性質を利用すると、定義に戻らず行列式を計算することができます。 行基本変形をして、簡約な行列にします。 ・1つの行を𝑐倍すると、行列式は𝑐倍になる。 (性質(1)) ・2つの行を入れ換えると、行列式は−1倍になる。 (性質(2)) ・1つの行に他の行の𝑐倍を加えても、行列式は変わらない。
(性質(4)) 簡約な行列は上三角行列なので、行列式は性質(6)から対角成分の積になります。
線形代数学 ⑤行列式 行列式と正則性 正方行列𝐴が正則であるかどうかは、行列式で判定することができます。 行列の行基本変形は、変形の前後で「行列式が0であるかどうか」を変えません。 ・𝐴が正則なら簡約化が単位行列になり、行列式は0になりません。 ・𝐴が正則でないなら簡約化の対角成分に0があるので、行列式は0になります。 正方行列𝐴が正則である ⇔ det(𝐴)
≠ 0
線形代数学 ⑤行列式 行列式の幾何学的意味 2次正方行列𝐴の行列式は、𝐴の2つの列ベクトルで張られる平行四辺形の面積に なります。 行ベクトルで張られる平行四辺形の面積も表しています。 𝑥 𝑦 0 𝑎
𝑐 𝑏 𝑑 面積 det 𝑎 𝑏 𝑐 𝑑
線形代数学 ⑤行列式 行列式の幾何学的意味 符号も考慮すると、行列式は1番目のベクトルから2番目のベクトルに向かって 左回りの向きで張られる平行四辺形の向き付き面積に対応します。 𝑛次正方行列についても、𝑛次元の格子の向き付き体積を表しています。 行列式は、微積分でも重積分の変数変換で使います。 「元の変数座標で面積1だった小さな正方形が、新しい変数座標で見たときに どのような面積の平行四辺形になっているか」が計算に必要だからです。 𝑥
𝑦 0 𝑏 𝑑 𝑎 𝑐 このときは det 𝑎 𝑏 𝑐 𝑑 < 0
線形代数学 ⑤行列式 まとめ ・置換を利用して行列式を定義できる。 ・行列式には様々な性質があり、行列式の計算に利用できる。 ・行列の正則性は、行列式が存在して0でないことと同値である。 ・行列式は、𝑛個の列ベクトルが張る𝑛次元格子の向き付き体積を表す。