Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第8回スライド
Search
TechmathProject
September 04, 2024
Science
0
32
線形代数学入門講座 第8回スライド
てくますプロジェクトで行った線形代数学入門講座の第8回スライドです。
実施:2024/08/26
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
76
統計学入門講座 第3回スライド
techmathproject
0
52
統計学入門講座 第2回スライド
techmathproject
0
64
統計学入門講座 第1回スライド
techmathproject
0
230
線形代数学入門講座 第1回スライド
techmathproject
0
50
線形代数学入門講座 第2回スライド
techmathproject
0
41
線形代数学入門講座 第3回スライド
techmathproject
0
27
線形代数学入門講座 第4回スライド
techmathproject
0
26
線形代数学入門講座 第5回スライド
techmathproject
0
26
Other Decks in Science
See All in Science
小杉考司(専修大学)
kosugitti
2
610
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
30k
LIMEを用いた判断根拠の可視化
kentaitakura
0
440
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
870
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
190
サイゼミ用因果推論
lw
1
2.9k
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
540
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
210
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
840
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.3k
Planted Clique Conjectures are Equivalent
nobushimi
0
110
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
Navigating Team Friction
lara
183
15k
Agile that works and the tools we love
rasmusluckow
328
21k
Bash Introduction
62gerente
611
210k
It's Worth the Effort
3n
184
28k
Why Our Code Smells
bkeepers
PRO
336
57k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
GraphQLとの向き合い方2022年版
quramy
44
13k
A Tale of Four Properties
chriscoyier
158
23k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
線形代数学 入門講座 ⑧行列の対角化 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 行列の対角化 対角化の求め方 対角化可能性 対角化の応用
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑧行列の対角化 対角行列とべき乗 行列の積は複雑に定義されていたので、𝑛 乗の計算も簡単ではありません。 −1 −2 3 4 2
= −5 −6 9 10 , −1 −2 3 4 3 = −13 −14 21 22 , ⋯ 対角行列のときは、 𝑛 乗の計算は簡単です。 1 0 0 2 2 = 1 0 0 4 , 1 0 0 2 3 = 1 0 0 8 , ⋯ 対角行列のべき乗の計算を利用して、一般の行列のべき乗を考えていきます。
線形代数学 ⑧行列の対角化 行列の対角化 行列 𝐴 に対して、𝑃−1𝐴𝑃 = 𝐵 となるような正則行列 𝑃
と対角行列 𝐵 を 求めることを行列 𝐴 の対角化といいます。 (例) 行列 𝐴 = −1 −2 3 4 に対して、 𝑃 = −1 −2 1 3 , 𝐵 = 1 0 0 2 とすると、 𝑃 = −3 −2 1 1 であり、 𝑃−1𝐴𝑃 = −3 −2 1 1 −1 −2 3 4 −1 −2 1 3 = 1 0 0 2 = 𝐵 なので、 これは行列 𝐴 の対角化である。
線形代数学 ⑧行列の対角化 正則行列 𝑃 の求め方 𝑛 次正方行列 𝐴 の対角化 𝑃−1𝐴𝑃
= 𝐵 の 𝑃 はどのように求めるのでしょうか。 ベクトル 𝒗1 が行列 𝐴 の固有値 𝜆1 に属する固有ベクトルであるとき、 固有ベクトルの定義から、𝐴𝒗1 = 𝜆1 𝒗1 となりました。 固有値 𝜆𝑖 と固有ベクトル 𝒗𝑖 で1次独立なものが 𝑛 個とれたとき、 それらを横に並べた行列 𝒗1 ⋯ 𝒗𝑛 は正則であり、これを 𝑃 とすれば、 𝐴𝑃 = 𝐴𝒗1 ⋯ 𝐴𝒗𝑛 = 𝜆1 𝒗1 ⋯ 𝜆𝑛 𝒗𝑛 = 𝑃 𝜆1 0 0 0 ⋱ 0 0 0 𝜆𝑛 なので、 これが行列 𝐴 の対角化の正則行列 𝑃 となります。
線形代数学 ⑧行列の対角化 正則行列 𝑃 の求め方 (例) 行列 𝐴 = −1
−2 3 4 に対して、 −1 1 は固有値 1 に, −2 3 は固有値 2 に属する固有ベクトルであった。 −1 1 と −2 3 は1次独立なので、 𝑃 = −1 −2 1 3 , 𝐵 = 1 0 0 2 とすると、 𝑃−1𝐴𝑃 = 𝐵 なので、これは行列 𝐴 の対角化である。
線形代数学 ⑧行列の対角化 対角化可能性 𝑛 次正方行列 𝐴 はいつでも対角化できるのでしょうか? 𝐴𝑃 = 𝐴𝒗1
⋯ 𝐴𝒗𝑛 = 𝜆1 𝒗1 ⋯ 𝜆𝑛 𝒗𝑛 のようできるためには、 行列 𝐴 の固有値 𝜆𝑖 と固有ベクトル 𝒗𝑖 で1次独立なものが 𝑛 個なければなりません。 各固有値の固有空間からとれる1次独立なベクトルの数はその次元以下なので、 をみたすことが、 𝐴 が対角化できるための条件になります。 の固有値 (固有空間の次元の和が 𝑛 と一致する) 𝜆∶𝐴 dim(𝑊(𝜆; 𝐴)) = 𝑛
線形代数学 ⑧行列の対角化 対角化可能性 (例) 行列 𝐴 = 1 0 0
1 に対して、𝐴 の固有値は 1 のみであり、 dim(𝑊 1 ; 𝐴 ) = dim 𝑐1 1 0 + 𝑐2 0 1 ∈ ℝ2 𝑐1 , 𝑐2 ∈ ℝ = 2 なので、 𝐴 は対角化可能である。 行列 𝐵 = 1 2 0 1 に対して、𝐵 の固有値は 1 のみであり、 dim(𝑊 1 ; 𝐵 ) = dim 𝑐 1 0 ∈ ℝ2 𝑐 ∈ ℝ = 1 なので、 𝐵 は対角化不可能である。
線形代数学 ⑧行列の対角化 対角化の応用 行列の対角化はべき乗の計算に利用できます。 行列 𝐴 が 𝑃−1𝐴𝑃 = 𝐵と対角化できるとき、𝐴𝑛
= 𝑃(𝑃−1𝐴𝑃)𝑛𝑃−1 = 𝑃𝐵𝑛𝑃−1 (例) 行列 𝐴 = −1 −2 3 4 に対して、 −3 −2 1 1 𝐴 −1 −2 1 3 = 1 0 0 2 と対角化できるので、 𝐴𝑛 = −1 −2 1 3 1 0 0 2 𝑛 −3 −2 1 1 = −2𝑛+1 + 3 −2+1 + 2 3 ∙ 2𝑛 − 3 3 ∙ 2𝑛 − 2
線形代数学 ⑧行列の対角化 対角化の応用 2次形式という2次の項のみでできた式 (例:𝑥2 + 4𝑥𝑦 − 2𝑦2) を
標準形という同じ文字の2次の項のみでできた式 (例:2𝑥2 − 3𝑦2) にする 変数変換を考えるときにも対角化が利用される。 (例) 𝑥2 + 4𝑥𝑦 − 2𝑦2 = 𝑥 𝑦 1 2 2 −2 𝑥 𝑦 と表すことができ、 2 1 1 −2 −1 1 2 2 −2 2 1 1 −2 = 2 0 0 −3 なので、 𝑥′ 𝑦′ = 2 1 1 −2 −1 𝑥 𝑦 と変数変換すると、2𝑥′2 − 3𝑦′2 = 𝑥2 + 4𝑥𝑦 − 2𝑦2
線形代数学 ⑧行列の対角化 まとめ ・行列 𝐴 に対して、𝑃−1𝐴𝑃 = 𝐵 で対角行列にすることを対角化という。 ・対角化に用いる行列は固有ベクトルを横に並べたものである。
・対角化可能の条件は固有空間の次元の和が全体の次元と等しいことである。 ・行列の対角化は、行列のべき乗を計算するときなどに利用できる。