Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
개발자의 인공지능 뽀개기
Search
Teddy
August 07, 2018
Programming
0
150
개발자의 인공지능 뽀개기
Teddy
August 07, 2018
Tweet
Share
More Decks by Teddy
See All by Teddy
스타트업 개발자의 이야기 (국민대)
teddykims
1
96
Git 기초
teddykims
0
81
클라이언트 권한 부여, 인증 시스템, OAuth-JWT
teddykims
0
110
2018.06, 싸이그래머 '심리상담과 IT'
teddykims
0
110
WebSocket, Socket.io
teddykims
1
56
2018.05, 소물, '소프트웨어와 미래 기술'
teddykims
0
80
소프트웨어와 미래 기술 (Software, Future Tech)
teddykims
0
180
리눅스 메모리 보호기법, 보안시스템의 이해
teddykims
0
230
무선 네트워크 해킹과 보안 (Network Hacking)
teddykims
0
200
Other Decks in Programming
See All in Programming
The Past, Present, and Future of Enterprise Java with ASF in the Middle
ivargrimstad
0
120
Android 16 × Jetpack Composeで縦書きテキストエディタを作ろう / Vertical Text Editor with Compose on Android 16
cc4966
2
230
Android端末で実現するオンデバイスLLM 2025
masayukisuda
1
150
Navigating Dependency Injection with Metro
zacsweers
3
960
プロパティベーステストによるUIテスト: LLMによるプロパティ定義生成でエッジケースを捉える
tetta_pdnt
0
1.7k
testingを眺める
matumoto
1
140
Vue・React マルチプロダクト開発を支える Vite
andpad
0
110
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
510
旅行プランAIエージェント開発の裏側
ippo012
2
910
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
220
Updates on MLS on Ruby (and maybe more)
sylph01
1
180
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Making Projects Easy
brettharned
117
6.4k
Balancing Empowerment & Direction
lara
3
620
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
We Have a Design System, Now What?
morganepeng
53
7.8k
Music & Morning Musume
bryan
46
6.8k
Rails Girls Zürich Keynote
gr2m
95
14k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
A designer walks into a library…
pauljervisheath
207
24k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
ѐߊܳ ਤೠ ੋҕמ ѐӝ
ա݅ ࢚ࢎܳ ݅աח о ए ߑߨ बܻ࢚ ݫन ۽झ [TROST]
()ോ݃ஹಌפ ()ോ݃ஹಌפ ӣక
ې
None
None
None
None
None
None
߸ച द
None
None
None
None
None
None
None
None
None
ੋҕמ ੋрਸ ӡ ࣻ Ҋ ૐݺػ ߣ૩ ࢎѤ
AI (Artificial Intelligence, ੋҕמ)
ӝ҅۽ࠗఠ ٜ݅য מ ੋр ࢎҊ۱ਸ צ ੋрۢ ࢤпೞח ஹೊఠ
ੑ۱߉ чਵ۽ ࠗఠ Ѿҗ чਸ ղח ೣࣻܳ ٜ݅য ղח Ѫ ъੋҕמ <-> ডੋҕמ (അ ੋҕמ)
ੋҕמ ޤ? ੋҕੋ Ѫ ޤ? מ ޤ? ӝ҅ب ࢤпೡ ࣻ
ਸө? ܻח যڌѱ ࢤпೞחѦө?
“ੋҕמ ߊݺۆ زରীࢲ ߄௰ܳ ڍযմ ٍ Ӓ ܻী ߊਸ ׳ӝ
ਤ೧ Ҋबೞח Ѫ.” “ੋҕמ ই पഅغ ঋ ޖо”
ੋҕמ ࠄې ݾ ‘बܻ’ী ೠ पੋ Ӕ য מ ޖੋ
ߋഃղח Ѫ ୭ୡ ݾ ؘఠ৬ धٜ ݽৈ ܲ ࠙ঠীࢲ ࢎ Ѿҗ ஏ ١ ঘ࣌ਸ ਤ೧ ѐߊغӝ दೞݴ ੋҕמ җ ߊ द
194x ~ 195x – ੋҕמ ࢤ “গפঈ ࢤ” > “ౚ݂
పझ” > “IBM ୭ୡ AI ஶಌ۠झ” > “AI ࢤ” 195x ~ 196x – ൞ݎ ੋҕמ “ੋр ࢤпೞח ӝ҅” > “ੋҕמ ѐߊ য ’LISP’ ࢤ” > “ৈ۞ ੋҕמ ۿ ١” 196x ~ 197x – ੋҕמ ঐӝ “Ҵ/Ҵ ࠗ ਗ ױ” > “ੋҕ न҃ݎ ೠ҅ ૐݺ” 197x ~ 199x – ޙо दझమ “ࢿ ആঘ ജ ױ ӏ ӝ߈ ޙо दझమ” > “স҅ ۞࠳” > “ੌࠄҗ Ҵ ষդ ਗ” 199x ~ 200x – ੋҕמ അ৬ ې “ۡ ֎ਕ, ਬ ঌҊ્ܻ ١” > “ؘఠ әૐ” > “ੋҕמ ӝٜ҅ ࢤ”
IBM ٩ ࠶ܖ IBM '٩ ࠶ܖ’ ۽ ੋр झିೖ оܻ
झ۽৬ ѹܞࢲ थܻ IBM Watson োয ܻܳ ਤ೧ࢲ ٜ݅য ஹೊఠ. ઁಌ٣ ௰ૉࣳীࢲ ିೖٜਸ ׂ۞ߡ۷. ۨ٘ಫ ۨ٘ಫ Ҵ ܻನפই݀(UCLA) ઁܻ ࠳ےষ Үࣻ৬ োҳ ѐߊೠ ۽Ӓ۔ਵ۽ ߧદ ࠁܳ ࠙ࢳ೧ 10~12दр ٍ ߧદо ੌযզ दрҗ ࣗܳ بೞח ۽Ӓ۔. ۽झঙۨझ ҃ (LAPD)җ दগౣ ҃ ١ ੌࠗ Ҵ ҃җ Ҵ ٜ҃ ۨ٘ಫਸ بੑೠ റ ߧદਯ 20% о Ҋ ೠ. ۄ झப ֎ӝݮ۠(CMU)ীࢲ ѐߊ೮Ҋ, Ҵ ೖஎߡӒ ҃ 2016֙ 10ਘࠗఠ ਊೞҊ ח ۽Ӓ۔ਵ۽, খਵ۽ ߊࢤೡ ߧદ दрҗ ࣗܳ ஏ೧ ೧ ࠁܳ ٜ҃ ֢࠘, झ݃ಪী ղࠗ ాनݎਸ ా೧ ׳ೠ.
Apple Siri Apple iPhone ী ػ োয ܻ AI.
೧ઉ ݅, ࢿੋध ࠗ࠙ पदрਵ۽ ߊ׳ೞח Ѫਵ۽ ୶ػ. ҳӖ ঌҊ ਬۣ ߄ق ିೖҗ Ѿೞৈ थܻ೮ਵݴ, 2016֙ 3ਘ ࣁج 9ױҗ Ҵীࢲ 4थ 1ಁ۽ थܻܳ Ѣف. ࢿ ࠻झ࠺ ࢿо ҕѐೠ Ҋࢿמ ੋҕמ ࠺ࢲ গܻா࣌ ࢎਸ ନয ޛܳ زਵ۽ ੋधೡ ࣻ ח ࠁػ ӝמਸ оҊ . बब AIܳ ߑೞҊ ݅ ࢎप ӝઓী ١۾غয ח ޙٜী ೧ ١۾غয ח ߸ਸ ೞח рױೠ ࣻળ ߑधۄ ੋҕמۄ ೞӟ ިೞ. ޙٜਸ ࠙ࢳೞח Ѫب ױযܳ оҊ ࠙ࢳೞח ࣻળ рױೠ ߑध.
ੋҕמ ܻо ਗೞח ژח ޖ ౠ ೯زਸ, ӝ҅о झझ۽ ஏ,
౸ױೞৈ ח Ѫ
णػ ղਊਸ ӝ߈ਵ۽ ېܳ ஏೠ. ਤ ஏ җਸ ਤ೧ ӝ҅ܳ
णदఃח ੌ۲ স ਃ ӝ҅ ण ষդ ন ؘఠܳ झझ۽ णೞҊ ܻೞৈ ޙઁী ೠ ೧ਸ ইղח ӝࣿ.
ӝ҅ח যڌѱ णਸ?
None
None
աޖ: ӝա оо ݾ۽ ػ ֙ࢤ धޛ ୶ ೠ҅
୶࢚Ѣա ҳੋ पо ח ࢚ ই ӝୡੋ ѐ֛ਸ ݠ݁ࣘী ܻѱ ೞӝ ਤ೧ࢲ, ࢚ਸ աఋղח ࣻ ݆ ࢠਸ ߉ইٜݶࢲ ݠ݁ࣘীࢲ ୷ػ ഋక۽ ݀೧ աоب۾ ֱী ݐӝח Ѫ աޖ ࣻ ݆ ࢠٜਸ ࠁݴ ೨ब ౠٜ ୷ػ Ѿҗޛ۽ ֱ ࣘীࢲ ই ୶࢚ੋ ഋక۽ ٜ݅য
ਬইӝ द ‘աޖ’ ۄח ࢚ ѐ֛ਸ ഊ؍ җҗ ݒ ൚ࢎ
ࣻ ݆ ࢠ ؕযܻܳ णೠ. => ࣻ ݆ ؘఠܳ णೠ.
दп, ୢп, റпੋ хп ࠁ/ౠٜਸ ֱী ೠ. => ӝ҅о ೧ೡ ࣻ ח ഋక۽ ࣻച (ܻ) ೞৈ ೠ.
None
ੋҕמ ? AI ? ӝ҅ण ? ݠन۞ ? ٩۞ ?
न҃ݎ ? ML ?
ੋҕמ ӝ҅ ण ٩۞ ੋҕמ(AI) > ݠन ۞(Machine Learning) >
٩۞ (Deep Learning)
- ୡӝ ٩۞ ‘ੋҕ न҃ݎ’ ۄח ઁ۽ 1942֙ ࡸܻо
दغ. - ੋр ֱ न҃ݎਸ ࠄٮ ݅ٚ ੋҕ न҃ݎ ݽ؛۽ ӝઓ ݠन۞ ೠ҅ (ؘఠী ನೣػ নೠ ߸ࣻܳ ঈ ೞ ޅೣ) ܳ ࠁ৮ೠ ߑߨਵ۽ ځয়ܰӝ द೮. - ੋр ֱ(۠) ҳઑܳ ਬࢎೞѱ ٜ݅যࠁח Ѽ݅ द ജ҃җ ؘఠ৬ ೞ٘ਝয ೠ҅۽ જ ಣਸ ޅ ೞणפ. ੋҕמ ӝ҅ ण ٩۞
ੋҕמ ӝ҅ ण ٩۞ - 2012֙, ҳӖҗ झగಌ٘ Andrew NG
Үࣻח 1݅ 6,000ѐ ஹೊఠ۽ ড 10র ѐ ࢚ न҃ݎਵ۽ ܞ ‘बகन҃ݎ(Deep Neural Network)’ਸ ҳഅ೮. ܳ ా೧ ਬౚ࠳ীࢲ 1,000݅ ѐܳ ࡳই ࠙ࢳೠ ٍ, ஹೊఠо ࢎۈҗ Ҋন ࢎਸ ࠙ܨೞب۾ ೞחؘ ࢿҕ೮ . ஹೊఠо ࢚ী աৡ Ҋন ഋక৬ ࢤӣ࢜ܳ ੋध ೞҊ ౸ױೞח җਸ झझ۽ णೞѱ ೠ Ѫ.
ੋҕמ ӝ҅ ण ٩۞ - ؘఠо ߑ೧Ҋ GPU ١ਵ۽
ࢿמҗ ജ҃ ࠁ৮غݴ 2010-12֙, बக ब҃ݎ, ٩۞ ࢤ ೮ण פ. - ঔܻ(CPU), ݫੋ (۳) - Ӓېܻ(GPU), ࠁઑ (߽۳) - CPU ח ࣽࢲ۽ ؘఠܳ ܻೞח ߑधী ౠചػ ҳ ઑܳ оҊ . GPU ח ࠺Ү рױೠ, ؏ ࠗझ۞ ੌਸ ബਯਵ۽ ܻೡ ࣻ . ܻ೧ঠ ೡ ݺ۸ য৬ ؘఠ ࢿѺী ٮۄ ٸ۽ח CPU, ٸ۽ח GPUо ࡅܳ ࣻо .
ੋҕמ Ҿӓੋ ݾҊ, ٩۞ਸ Ӓী ܰӝ ਤೠ ࣻ ݆ ࣻױ
ೞաੌ ࡺ!
Q. ٩۞ о ऽாੋоਃ? ޖઑѤ ੋо ਃ? Q. ח ޖट
ঌҊ્ܻਸ ࢎਊೞҊ रযਃ. যٸ ਃ? Q. ঌҊח ৮ ࢜۽ AI ੋѤоਃ?
Q. ઁ ࣼઁ न ೧ ࣻ աਃ? Q. ઁ թ,
ৈҳо غয ࣻ աਃ? Q. ঌҊ ऱ ੜ ೞաਃ?
ҕࠗ ೞҊ रযਃ! http://hunkim.github.io/ml/
ӝࣿ ਲ਼җ ې
None
None
None
None
None
None
None
None
None
None
None
None
ഒࢲ ೡ ࣻ ח Ѫ 0
ېח ѾҴ ౠ ӝࣿ, সҗ ݽٚ Ѫ ਲ਼ীࢲ द
4ର, Nର স ഄݺ ࠺ૉפझ ҕә ߑध ߸ച স ܻ࠙
(ؘఠ җ VS ੌ߈ੋ) ੌ࢚ ࢤഝ ۖಬച
झ౭࠵ ഐఊ “৮߷ೠ ੋҕמ ӝࣿ ѐߊ, ੋܨ ݷݎਸ ࠛ۞ৢࣻب..” ࠽
ѱ “ੋр ੌܻܳ ࡐਸ ۽ࠈীѱ ࣗٙࣁܳ ѥח ଼ਸ..”
None