Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
개발자의 인공지능 뽀개기
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Teddy
August 07, 2018
Programming
0
160
개발자의 인공지능 뽀개기
Teddy
August 07, 2018
Tweet
Share
More Decks by Teddy
See All by Teddy
스타트업 개발자의 이야기 (국민대)
teddykims
1
100
Git 기초
teddykims
0
83
클라이언트 권한 부여, 인증 시스템, OAuth-JWT
teddykims
0
110
2018.06, 싸이그래머 '심리상담과 IT'
teddykims
0
120
WebSocket, Socket.io
teddykims
1
57
2018.05, 소물, '소프트웨어와 미래 기술'
teddykims
0
82
소프트웨어와 미래 기술 (Software, Future Tech)
teddykims
0
190
리눅스 메모리 보호기법, 보안시스템의 이해
teddykims
0
240
무선 네트워크 해킹과 보안 (Network Hacking)
teddykims
0
220
Other Decks in Programming
See All in Programming
今から始めるClaude Code超入門
448jp
8
9k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
CSC307 Lecture 03
javiergs
PRO
1
490
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1k
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
100
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
460
ぼくの開発環境2026
yuzneri
0
240
Claude Codeと2つの巻き戻し戦略 / Two Rewind Strategies with Claude Code
fruitriin
0
140
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
4k
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
750
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Become a Pro
speakerdeck
PRO
31
5.8k
Building an army of robots
kneath
306
46k
Rails Girls Zürich Keynote
gr2m
96
14k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
57
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Transcript
ѐߊܳ ਤೠ ੋҕמ ѐӝ
ա݅ ࢚ࢎܳ ݅աח о ए ߑߨ बܻ࢚ ݫन ۽झ [TROST]
()ോ݃ஹಌפ ()ോ݃ஹಌפ ӣక
ې
None
None
None
None
None
None
߸ച द
None
None
None
None
None
None
None
None
None
ੋҕמ ੋрਸ ӡ ࣻ Ҋ ૐݺػ ߣ૩ ࢎѤ
AI (Artificial Intelligence, ੋҕמ)
ӝ҅۽ࠗఠ ٜ݅য מ ੋр ࢎҊ۱ਸ צ ੋрۢ ࢤпೞח ஹೊఠ
ੑ۱߉ чਵ۽ ࠗఠ Ѿҗ чਸ ղח ೣࣻܳ ٜ݅য ղח Ѫ ъੋҕמ <-> ডੋҕמ (അ ੋҕמ)
ੋҕמ ޤ? ੋҕੋ Ѫ ޤ? מ ޤ? ӝ҅ب ࢤпೡ ࣻ
ਸө? ܻח যڌѱ ࢤпೞחѦө?
“ੋҕמ ߊݺۆ زରীࢲ ߄௰ܳ ڍযմ ٍ Ӓ ܻী ߊਸ ׳ӝ
ਤ೧ Ҋबೞח Ѫ.” “ੋҕמ ই पഅغ ঋ ޖо”
ੋҕמ ࠄې ݾ ‘बܻ’ী ೠ पੋ Ӕ য מ ޖੋ
ߋഃղח Ѫ ୭ୡ ݾ ؘఠ৬ धٜ ݽৈ ܲ ࠙ঠীࢲ ࢎ Ѿҗ ஏ ١ ঘ࣌ਸ ਤ೧ ѐߊغӝ दೞݴ ੋҕמ җ ߊ द
194x ~ 195x – ੋҕמ ࢤ “গפঈ ࢤ” > “ౚ݂
పझ” > “IBM ୭ୡ AI ஶಌ۠झ” > “AI ࢤ” 195x ~ 196x – ൞ݎ ੋҕמ “ੋр ࢤпೞח ӝ҅” > “ੋҕמ ѐߊ য ’LISP’ ࢤ” > “ৈ۞ ੋҕמ ۿ ١” 196x ~ 197x – ੋҕמ ঐӝ “Ҵ/Ҵ ࠗ ਗ ױ” > “ੋҕ न҃ݎ ೠ҅ ૐݺ” 197x ~ 199x – ޙо दझమ “ࢿ ആঘ ജ ױ ӏ ӝ߈ ޙо दझమ” > “স҅ ۞࠳” > “ੌࠄҗ Ҵ ষդ ਗ” 199x ~ 200x – ੋҕמ അ৬ ې “ۡ ֎ਕ, ਬ ঌҊ્ܻ ١” > “ؘఠ әૐ” > “ੋҕמ ӝٜ҅ ࢤ”
IBM ٩ ࠶ܖ IBM '٩ ࠶ܖ’ ۽ ੋр झିೖ оܻ
झ۽৬ ѹܞࢲ थܻ IBM Watson োয ܻܳ ਤ೧ࢲ ٜ݅য ஹೊఠ. ઁಌ٣ ௰ૉࣳীࢲ ିೖٜਸ ׂ۞ߡ۷. ۨ٘ಫ ۨ٘ಫ Ҵ ܻನפই݀(UCLA) ઁܻ ࠳ےষ Үࣻ৬ োҳ ѐߊೠ ۽Ӓ۔ਵ۽ ߧદ ࠁܳ ࠙ࢳ೧ 10~12दр ٍ ߧદо ੌযզ दрҗ ࣗܳ بೞח ۽Ӓ۔. ۽झঙۨझ ҃ (LAPD)җ दগౣ ҃ ١ ੌࠗ Ҵ ҃җ Ҵ ٜ҃ ۨ٘ಫਸ بੑೠ റ ߧદਯ 20% о Ҋ ೠ. ۄ झப ֎ӝݮ۠(CMU)ীࢲ ѐߊ೮Ҋ, Ҵ ೖஎߡӒ ҃ 2016֙ 10ਘࠗఠ ਊೞҊ ח ۽Ӓ۔ਵ۽, খਵ۽ ߊࢤೡ ߧદ दрҗ ࣗܳ ஏ೧ ೧ ࠁܳ ٜ҃ ֢࠘, झ݃ಪী ղࠗ ాनݎਸ ా೧ ׳ೠ.
Apple Siri Apple iPhone ী ػ োয ܻ AI.
೧ઉ ݅, ࢿੋध ࠗ࠙ पदрਵ۽ ߊ׳ೞח Ѫਵ۽ ୶ػ. ҳӖ ঌҊ ਬۣ ߄ق ିೖҗ Ѿೞৈ थܻ೮ਵݴ, 2016֙ 3ਘ ࣁج 9ױҗ Ҵীࢲ 4थ 1ಁ۽ थܻܳ Ѣف. ࢿ ࠻झ࠺ ࢿо ҕѐೠ Ҋࢿמ ੋҕמ ࠺ࢲ গܻா࣌ ࢎਸ ନয ޛܳ زਵ۽ ੋधೡ ࣻ ח ࠁػ ӝמਸ оҊ . बब AIܳ ߑೞҊ ݅ ࢎप ӝઓী ١۾غয ח ޙٜী ೧ ١۾غয ח ߸ਸ ೞח рױೠ ࣻળ ߑधۄ ੋҕמۄ ೞӟ ިೞ. ޙٜਸ ࠙ࢳೞח Ѫب ױযܳ оҊ ࠙ࢳೞח ࣻળ рױೠ ߑध.
ੋҕמ ܻо ਗೞח ژח ޖ ౠ ೯زਸ, ӝ҅о झझ۽ ஏ,
౸ױೞৈ ח Ѫ
णػ ղਊਸ ӝ߈ਵ۽ ېܳ ஏೠ. ਤ ஏ җਸ ਤ೧ ӝ҅ܳ
णदఃח ੌ۲ স ਃ ӝ҅ ण ষդ ন ؘఠܳ झझ۽ णೞҊ ܻೞৈ ޙઁী ೠ ೧ਸ ইղח ӝࣿ.
ӝ҅ח যڌѱ णਸ?
None
None
աޖ: ӝա оо ݾ۽ ػ ֙ࢤ धޛ ୶ ೠ҅
୶࢚Ѣա ҳੋ पо ח ࢚ ই ӝୡੋ ѐ֛ਸ ݠ݁ࣘী ܻѱ ೞӝ ਤ೧ࢲ, ࢚ਸ աఋղח ࣻ ݆ ࢠਸ ߉ইٜݶࢲ ݠ݁ࣘীࢲ ୷ػ ഋక۽ ݀೧ աоب۾ ֱী ݐӝח Ѫ աޖ ࣻ ݆ ࢠٜਸ ࠁݴ ೨ब ౠٜ ୷ػ Ѿҗޛ۽ ֱ ࣘীࢲ ই ୶࢚ੋ ഋక۽ ٜ݅য
ਬইӝ द ‘աޖ’ ۄח ࢚ ѐ֛ਸ ഊ؍ җҗ ݒ ൚ࢎ
ࣻ ݆ ࢠ ؕযܻܳ णೠ. => ࣻ ݆ ؘఠܳ णೠ.
दп, ୢп, റпੋ хп ࠁ/ౠٜਸ ֱী ೠ. => ӝ҅о ೧ೡ ࣻ ח ഋక۽ ࣻച (ܻ) ೞৈ ೠ.
None
ੋҕמ ? AI ? ӝ҅ण ? ݠन۞ ? ٩۞ ?
न҃ݎ ? ML ?
ੋҕמ ӝ҅ ण ٩۞ ੋҕמ(AI) > ݠन ۞(Machine Learning) >
٩۞ (Deep Learning)
- ୡӝ ٩۞ ‘ੋҕ न҃ݎ’ ۄח ઁ۽ 1942֙ ࡸܻо
दغ. - ੋр ֱ न҃ݎਸ ࠄٮ ݅ٚ ੋҕ न҃ݎ ݽ؛۽ ӝઓ ݠन۞ ೠ҅ (ؘఠী ನೣػ নೠ ߸ࣻܳ ঈ ೞ ޅೣ) ܳ ࠁ৮ೠ ߑߨਵ۽ ځয়ܰӝ द೮. - ੋр ֱ(۠) ҳઑܳ ਬࢎೞѱ ٜ݅যࠁח Ѽ݅ द ജ҃җ ؘఠ৬ ೞ٘ਝয ೠ҅۽ જ ಣਸ ޅ ೞणפ. ੋҕמ ӝ҅ ण ٩۞
ੋҕמ ӝ҅ ण ٩۞ - 2012֙, ҳӖҗ झగಌ٘ Andrew NG
Үࣻח 1݅ 6,000ѐ ஹೊఠ۽ ড 10র ѐ ࢚ न҃ݎਵ۽ ܞ ‘बகन҃ݎ(Deep Neural Network)’ਸ ҳഅ೮. ܳ ా೧ ਬౚ࠳ীࢲ 1,000݅ ѐܳ ࡳই ࠙ࢳೠ ٍ, ஹೊఠо ࢎۈҗ Ҋন ࢎਸ ࠙ܨೞب۾ ೞחؘ ࢿҕ೮ . ஹೊఠо ࢚ী աৡ Ҋন ഋక৬ ࢤӣ࢜ܳ ੋध ೞҊ ౸ױೞח җਸ झझ۽ णೞѱ ೠ Ѫ.
ੋҕמ ӝ҅ ण ٩۞ - ؘఠо ߑ೧Ҋ GPU ١ਵ۽
ࢿמҗ ജ҃ ࠁ৮غݴ 2010-12֙, बக ब҃ݎ, ٩۞ ࢤ ೮ण פ. - ঔܻ(CPU), ݫੋ (۳) - Ӓېܻ(GPU), ࠁઑ (߽۳) - CPU ח ࣽࢲ۽ ؘఠܳ ܻೞח ߑधী ౠചػ ҳ ઑܳ оҊ . GPU ח ࠺Ү рױೠ, ؏ ࠗझ۞ ੌਸ ബਯਵ۽ ܻೡ ࣻ . ܻ೧ঠ ೡ ݺ۸ য৬ ؘఠ ࢿѺী ٮۄ ٸ۽ח CPU, ٸ۽ח GPUо ࡅܳ ࣻо .
ੋҕמ Ҿӓੋ ݾҊ, ٩۞ਸ Ӓী ܰӝ ਤೠ ࣻ ݆ ࣻױ
ೞաੌ ࡺ!
Q. ٩۞ о ऽாੋоਃ? ޖઑѤ ੋо ਃ? Q. ח ޖट
ঌҊ્ܻਸ ࢎਊೞҊ रযਃ. যٸ ਃ? Q. ঌҊח ৮ ࢜۽ AI ੋѤоਃ?
Q. ઁ ࣼઁ न ೧ ࣻ աਃ? Q. ઁ թ,
ৈҳо غয ࣻ աਃ? Q. ঌҊ ऱ ੜ ೞաਃ?
ҕࠗ ೞҊ रযਃ! http://hunkim.github.io/ml/
ӝࣿ ਲ਼җ ې
None
None
None
None
None
None
None
None
None
None
None
None
ഒࢲ ೡ ࣻ ח Ѫ 0
ېח ѾҴ ౠ ӝࣿ, সҗ ݽٚ Ѫ ਲ਼ীࢲ द
4ର, Nର স ഄݺ ࠺ૉפझ ҕә ߑध ߸ച স ܻ࠙
(ؘఠ җ VS ੌ߈ੋ) ੌ࢚ ࢤഝ ۖಬച
झ౭࠵ ഐఊ “৮߷ೠ ੋҕמ ӝࣿ ѐߊ, ੋܨ ݷݎਸ ࠛ۞ৢࣻب..” ࠽
ѱ “ੋр ੌܻܳ ࡐਸ ۽ࠈীѱ ࣗٙࣁܳ ѥח ଼ਸ..”
None