Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Pipeline Casual Talk for Ready
Search
tetsuroito
February 08, 2019
Research
1
12k
Data Pipeline Casual Talk for Ready
20190213 Data Pipeline Casual Talk @エムスリーのオープニングトーク資料です。
tetsuroito
February 08, 2019
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.7k
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
790
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
590
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.5k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.6k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
110
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.4k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
1.8k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
tetsuroito
3
3.2k
Other Decks in Research
See All in Research
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
チュートリアル:Mamba, Vision Mamba (Vim)
hf149
5
1.6k
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
170
Practical The One Person Framework
asonas
1
1.8k
12
0325
0
200
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
290
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
320
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
150
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
620
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
4
920
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
180
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
73
9.1k
Git: the NoSQL Database
bkeepers
PRO
427
64k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Embracing the Ebb and Flow
colly
84
4.5k
A Tale of Four Properties
chriscoyier
157
23k
Done Done
chrislema
181
16k
Code Reviewing Like a Champion
maltzj
520
39k
Building Adaptive Systems
keathley
38
2.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Building an army of robots
kneath
302
44k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
Data Pipeline Casual Talk for Ready 2019/02/13(Wed) @エムスリー
何者ですか? • 名前:伊藤 徹郎 (@tetsuroito) • 所属:Classi株式会社 AI室 データサイエンティスト •
分野:Educational Technology , Learning Analytics • 著書:データサイエンティスト養成読本ビジネス活用編 • 運営: ◦ Machine Learning Casual Talks ◦ Data Analyst Meetup Tokyo など
カジュアルとは 引用 https://twitter.com/con_mame/status/457130929270435840
#DPCTの狙い データ活用のコモディティ化がだいぶ浸透した ガートナー・ハイプサイクル 2018の図は https://japan.zdnet.com/article/35126917/ より引用
#DPCTの狙い • すべてのリソースとなる「データ」 • 活用の必要性は周知の通り • 21世紀の石油と形容されることもある • ビッグデータと称し、「量」が重視される •
GPUなどの計算リソースなどの進化 などなど
#DPCTの狙い そのデータの生成過程知ってますか? 誰がどうやって利用可能なデータにして いますか? 品質を上げるための苦労を知ってます か? それを担っているのは誰ですか? どんなスキルや経験が必要ですか? どんなツールがありますか? え、機械学習に使いたいって?
・・・
#DPCTの狙い • データの処理工程であるパイプラインがまだ軽視されている • パイプラインの技術情報の共有 • 活用へのパイプライン、機械学習へのパイプライン(MLパイプライン) • 様々なツールの情報 •
担い手のスキル情報 • チームビルディング • 運用における課題 etc こんなことをカジュアルに話すのは#DPCTです!
登壇者だけでなく、 参加者のみなさんからの活発な議論を よろしくお願いします!
大好評のため、次回も開催したいと思います。 発表者および会場を募集します。 よろしくお願いします。
Appendix:申込者属性集計(複数回答可)
Appendix:DPCTに期待すること
Appendix:DPCTに期待すること