Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Pipeline Casual Talk for Ready
Search
tetsuroito
February 08, 2019
Research
1
12k
Data Pipeline Casual Talk for Ready
20190213 Data Pipeline Casual Talk @エムスリーのオープニングトーク資料です。
tetsuroito
February 08, 2019
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
Data Engineering Study#30 LT資料
tetsuroito
2
1.4k
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.9k
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
860
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
650
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.9k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.9k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
140
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.6k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
2k
Other Decks in Research
See All in Research
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1k
Language Models Are Implicitly Continuous
eumesy
PRO
0
280
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
610
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
550
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
360
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
240
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
340
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
190
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
250
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
380
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
19k
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
The Invisible Side of Design
smashingmag
301
51k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
What's in a price? How to price your products and services
michaelherold
246
12k
Building an army of robots
kneath
306
46k
BBQ
matthewcrist
89
9.8k
A Tale of Four Properties
chriscoyier
160
23k
Thoughts on Productivity
jonyablonski
70
4.9k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Transcript
Data Pipeline Casual Talk for Ready 2019/02/13(Wed) @エムスリー
何者ですか? • 名前:伊藤 徹郎 (@tetsuroito) • 所属:Classi株式会社 AI室 データサイエンティスト •
分野:Educational Technology , Learning Analytics • 著書:データサイエンティスト養成読本ビジネス活用編 • 運営: ◦ Machine Learning Casual Talks ◦ Data Analyst Meetup Tokyo など
カジュアルとは 引用 https://twitter.com/con_mame/status/457130929270435840
#DPCTの狙い データ活用のコモディティ化がだいぶ浸透した ガートナー・ハイプサイクル 2018の図は https://japan.zdnet.com/article/35126917/ より引用
#DPCTの狙い • すべてのリソースとなる「データ」 • 活用の必要性は周知の通り • 21世紀の石油と形容されることもある • ビッグデータと称し、「量」が重視される •
GPUなどの計算リソースなどの進化 などなど
#DPCTの狙い そのデータの生成過程知ってますか? 誰がどうやって利用可能なデータにして いますか? 品質を上げるための苦労を知ってます か? それを担っているのは誰ですか? どんなスキルや経験が必要ですか? どんなツールがありますか? え、機械学習に使いたいって?
・・・
#DPCTの狙い • データの処理工程であるパイプラインがまだ軽視されている • パイプラインの技術情報の共有 • 活用へのパイプライン、機械学習へのパイプライン(MLパイプライン) • 様々なツールの情報 •
担い手のスキル情報 • チームビルディング • 運用における課題 etc こんなことをカジュアルに話すのは#DPCTです!
登壇者だけでなく、 参加者のみなさんからの活発な議論を よろしくお願いします!
大好評のため、次回も開催したいと思います。 発表者および会場を募集します。 よろしくお願いします。
Appendix:申込者属性集計(複数回答可)
Appendix:DPCTに期待すること
Appendix:DPCTに期待すること