Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Machine Learning
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Tiago Martinho
May 01, 2018
Technology
0
47
Introduction to Machine Learning
Tiago Martinho
May 01, 2018
Tweet
Share
More Decks by Tiago Martinho
See All by Tiago Martinho
Time Managment
tiagomartinho
0
44
BuddyBuild
tiagomartinho
0
40
Daily Journal
tiagomartinho
0
55
Everyone can code
tiagomartinho
0
37
Silicon Valley Tour
tiagomartinho
1
70
Automated User Interface Testing
tiagomartinho
0
64
Swift Peer Lab - try! Swift Tokyo
tiagomartinho
0
90
Francigenr
tiagomartinho
1
36
Artusi Learning
tiagomartinho
0
47
Other Decks in Technology
See All in Technology
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
210
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
290
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
350
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
210
20260204_Midosuji_Tech
takuyay0ne
1
160
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
140
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
AI駆動開発を事業のコアに置く
tasukuonizawa
1
200
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
150
Featured
See All Featured
30 Presentation Tips
portentint
PRO
1
220
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
66
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Are puppies a ranking factor?
jonoalderson
1
2.7k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
WCS-LA-2024
lcolladotor
0
450
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Curse of the Amulet
leimatthew05
1
8.6k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
Tiago Martinho @martinho_t tiagomartinho Introduction to Machine Learning
What is ML?
Computer science Artificial Intelligence Machine Learning Pattern Recognition and Computational
Learning Theory
"the ability to learn without being explicitly programmed” Arthur Samuel,1959
"A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Tom M. Mitchell
Task Detecting Handwriting Characters
Task Experience Detecting Handwriting Characters Labelled Handwriting Characters
Task Performance Experience Detecting Handwriting Characters Detects Characters w/ Higher
Accuracy Labelled Handwriting Characters
Why ML?
MNIST simple computer vision dataset ML Hello World
None
28x28 = 784 numbers
uses the examples to automatically infer rules for recognising handwritten
digits 0 1 2 3 4 5 6 7 8 9
ML Applications
Fraud Detection Self-Driving Cars OCR Search engines Computer Vision Health
Monitoring … NLP
OrCam http://www.orcam.com
Alpha Go https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-go-player/
Poker https://www.scientificamerican.com/article/time-to-fold-humans-poker-playing-ai-beats-pros-at-texas-hold-rsquo-em/
How it works
Supervised Learning
Supervised Learning
Supervised Learning General Rule Y = M*x + b
Supervised Learning
Unsupervised Learning
Unsupervised Learning
Unsupervised Learning
Support Vector Machine
SVM
Anomaly detection
Anomaly detection
Anomaly detection
Anomaly detection
Training Inference
Features
Collect Train Classify
Data 1. Train (60%) 2. Test (20%) 3. Validation (20%)
Can we generalise?
None
None
None
Tiago Martinho @martinho_t tiagomartinho Thank you!