Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Machine Learning
Search
Tiago Martinho
May 01, 2018
Technology
0
47
Introduction to Machine Learning
Tiago Martinho
May 01, 2018
Tweet
Share
More Decks by Tiago Martinho
See All by Tiago Martinho
Time Managment
tiagomartinho
0
44
BuddyBuild
tiagomartinho
0
40
Daily Journal
tiagomartinho
0
55
Everyone can code
tiagomartinho
0
37
Silicon Valley Tour
tiagomartinho
1
70
Automated User Interface Testing
tiagomartinho
0
64
Swift Peer Lab - try! Swift Tokyo
tiagomartinho
0
90
Francigenr
tiagomartinho
1
36
Artusi Learning
tiagomartinho
0
47
Other Decks in Technology
See All in Technology
Red Hat OpenStack Services on OpenShift
tamemiya
0
110
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
450
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
230
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
280
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
230
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
140
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
660
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
配列に見る bash と zsh の違い
kazzpapa3
1
150
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
140
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Faster Mobile Websites
deanohume
310
31k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Become a Pro
speakerdeck
PRO
31
5.8k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Fireside Chat
paigeccino
41
3.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
Tiago Martinho @martinho_t tiagomartinho Introduction to Machine Learning
What is ML?
Computer science Artificial Intelligence Machine Learning Pattern Recognition and Computational
Learning Theory
"the ability to learn without being explicitly programmed” Arthur Samuel,1959
"A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Tom M. Mitchell
Task Detecting Handwriting Characters
Task Experience Detecting Handwriting Characters Labelled Handwriting Characters
Task Performance Experience Detecting Handwriting Characters Detects Characters w/ Higher
Accuracy Labelled Handwriting Characters
Why ML?
MNIST simple computer vision dataset ML Hello World
None
28x28 = 784 numbers
uses the examples to automatically infer rules for recognising handwritten
digits 0 1 2 3 4 5 6 7 8 9
ML Applications
Fraud Detection Self-Driving Cars OCR Search engines Computer Vision Health
Monitoring … NLP
OrCam http://www.orcam.com
Alpha Go https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-go-player/
Poker https://www.scientificamerican.com/article/time-to-fold-humans-poker-playing-ai-beats-pros-at-texas-hold-rsquo-em/
How it works
Supervised Learning
Supervised Learning
Supervised Learning General Rule Y = M*x + b
Supervised Learning
Unsupervised Learning
Unsupervised Learning
Unsupervised Learning
Support Vector Machine
SVM
Anomaly detection
Anomaly detection
Anomaly detection
Anomaly detection
Training Inference
Features
Collect Train Classify
Data 1. Train (60%) 2. Test (20%) 3. Validation (20%)
Can we generalise?
None
None
None
Tiago Martinho @martinho_t tiagomartinho Thank you!