Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Machine Learning
Search
Tiago Martinho
May 01, 2018
Technology
0
47
Introduction to Machine Learning
Tiago Martinho
May 01, 2018
Tweet
Share
More Decks by Tiago Martinho
See All by Tiago Martinho
Time Managment
tiagomartinho
0
44
BuddyBuild
tiagomartinho
0
40
Daily Journal
tiagomartinho
0
55
Everyone can code
tiagomartinho
0
37
Silicon Valley Tour
tiagomartinho
1
70
Automated User Interface Testing
tiagomartinho
0
64
Swift Peer Lab - try! Swift Tokyo
tiagomartinho
0
90
Francigenr
tiagomartinho
1
36
Artusi Learning
tiagomartinho
0
47
Other Decks in Technology
See All in Technology
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
440
Agile Leadership Summit Keynote 2026
m_seki
1
620
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
140
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
590
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
660
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
How to build a perfect <img>
jonoalderson
1
4.9k
Building Adaptive Systems
keathley
44
2.9k
Building Applications with DynamoDB
mza
96
6.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Transcript
Tiago Martinho @martinho_t tiagomartinho Introduction to Machine Learning
What is ML?
Computer science Artificial Intelligence Machine Learning Pattern Recognition and Computational
Learning Theory
"the ability to learn without being explicitly programmed” Arthur Samuel,1959
"A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Tom M. Mitchell
Task Detecting Handwriting Characters
Task Experience Detecting Handwriting Characters Labelled Handwriting Characters
Task Performance Experience Detecting Handwriting Characters Detects Characters w/ Higher
Accuracy Labelled Handwriting Characters
Why ML?
MNIST simple computer vision dataset ML Hello World
None
28x28 = 784 numbers
uses the examples to automatically infer rules for recognising handwritten
digits 0 1 2 3 4 5 6 7 8 9
ML Applications
Fraud Detection Self-Driving Cars OCR Search engines Computer Vision Health
Monitoring … NLP
OrCam http://www.orcam.com
Alpha Go https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-go-player/
Poker https://www.scientificamerican.com/article/time-to-fold-humans-poker-playing-ai-beats-pros-at-texas-hold-rsquo-em/
How it works
Supervised Learning
Supervised Learning
Supervised Learning General Rule Y = M*x + b
Supervised Learning
Unsupervised Learning
Unsupervised Learning
Unsupervised Learning
Support Vector Machine
SVM
Anomaly detection
Anomaly detection
Anomaly detection
Anomaly detection
Training Inference
Features
Collect Train Classify
Data 1. Train (60%) 2. Test (20%) 3. Validation (20%)
Can we generalise?
None
None
None
Tiago Martinho @martinho_t tiagomartinho Thank you!