Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Machine Learning
Search
Tiago Martinho
May 01, 2018
Technology
0
46
Introduction to Machine Learning
Tiago Martinho
May 01, 2018
Tweet
Share
More Decks by Tiago Martinho
See All by Tiago Martinho
Time Managment
tiagomartinho
0
43
BuddyBuild
tiagomartinho
0
38
Daily Journal
tiagomartinho
0
54
Everyone can code
tiagomartinho
0
36
Silicon Valley Tour
tiagomartinho
1
69
Automated User Interface Testing
tiagomartinho
0
64
Swift Peer Lab - try! Swift Tokyo
tiagomartinho
0
89
Francigenr
tiagomartinho
1
35
Artusi Learning
tiagomartinho
0
45
Other Decks in Technology
See All in Technology
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
ganota
2
310
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
490
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
330
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
230
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
280
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
10
75k
人工衛星のファームウェアをRustで書く理由
koba789
15
8.3k
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
1.1k
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
260
Create Ruby native extension gem with Go
sue445
0
130
共有と分離 - Compose Multiplatform "本番導入" の設計指針
error96num
2
1.1k
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
120
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
Context Engineering - Making Every Token Count
addyosmani
3
58
4 Signs Your Business is Dying
shpigford
184
22k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Balancing Empowerment & Direction
lara
3
620
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Documentation Writing (for coders)
carmenintech
74
5k
Why Our Code Smells
bkeepers
PRO
339
57k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Optimizing for Happiness
mojombo
379
70k
Transcript
Tiago Martinho @martinho_t tiagomartinho Introduction to Machine Learning
What is ML?
Computer science Artificial Intelligence Machine Learning Pattern Recognition and Computational
Learning Theory
"the ability to learn without being explicitly programmed” Arthur Samuel,1959
"A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Tom M. Mitchell
Task Detecting Handwriting Characters
Task Experience Detecting Handwriting Characters Labelled Handwriting Characters
Task Performance Experience Detecting Handwriting Characters Detects Characters w/ Higher
Accuracy Labelled Handwriting Characters
Why ML?
MNIST simple computer vision dataset ML Hello World
None
28x28 = 784 numbers
uses the examples to automatically infer rules for recognising handwritten
digits 0 1 2 3 4 5 6 7 8 9
ML Applications
Fraud Detection Self-Driving Cars OCR Search engines Computer Vision Health
Monitoring … NLP
OrCam http://www.orcam.com
Alpha Go https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-go-player/
Poker https://www.scientificamerican.com/article/time-to-fold-humans-poker-playing-ai-beats-pros-at-texas-hold-rsquo-em/
How it works
Supervised Learning
Supervised Learning
Supervised Learning General Rule Y = M*x + b
Supervised Learning
Unsupervised Learning
Unsupervised Learning
Unsupervised Learning
Support Vector Machine
SVM
Anomaly detection
Anomaly detection
Anomaly detection
Anomaly detection
Training Inference
Features
Collect Train Classify
Data 1. Train (60%) 2. Test (20%) 3. Validation (20%)
Can we generalise?
None
None
None
Tiago Martinho @martinho_t tiagomartinho Thank you!