Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Machine Learning
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Tiago Martinho
May 01, 2018
Technology
0
47
Introduction to Machine Learning
Tiago Martinho
May 01, 2018
Tweet
Share
More Decks by Tiago Martinho
See All by Tiago Martinho
Time Managment
tiagomartinho
0
44
BuddyBuild
tiagomartinho
0
40
Daily Journal
tiagomartinho
0
55
Everyone can code
tiagomartinho
0
37
Silicon Valley Tour
tiagomartinho
1
70
Automated User Interface Testing
tiagomartinho
0
64
Swift Peer Lab - try! Swift Tokyo
tiagomartinho
0
90
Francigenr
tiagomartinho
1
36
Artusi Learning
tiagomartinho
0
47
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
150
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
110
Tebiki Engineering Team Deck
tebiki
0
24k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
660
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
140
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
470
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
Featured
See All Featured
HDC tutorial
michielstock
1
380
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Testing 201, or: Great Expectations
jmmastey
46
8k
Paper Plane
katiecoart
PRO
0
46k
Embracing the Ebb and Flow
colly
88
5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
82
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Transcript
Tiago Martinho @martinho_t tiagomartinho Introduction to Machine Learning
What is ML?
Computer science Artificial Intelligence Machine Learning Pattern Recognition and Computational
Learning Theory
"the ability to learn without being explicitly programmed” Arthur Samuel,1959
"A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Tom M. Mitchell
Task Detecting Handwriting Characters
Task Experience Detecting Handwriting Characters Labelled Handwriting Characters
Task Performance Experience Detecting Handwriting Characters Detects Characters w/ Higher
Accuracy Labelled Handwriting Characters
Why ML?
MNIST simple computer vision dataset ML Hello World
None
28x28 = 784 numbers
uses the examples to automatically infer rules for recognising handwritten
digits 0 1 2 3 4 5 6 7 8 9
ML Applications
Fraud Detection Self-Driving Cars OCR Search engines Computer Vision Health
Monitoring … NLP
OrCam http://www.orcam.com
Alpha Go https://techcrunch.com/2017/05/23/googles-alphago-ai-beats-the-worlds-best-human-go-player/
Poker https://www.scientificamerican.com/article/time-to-fold-humans-poker-playing-ai-beats-pros-at-texas-hold-rsquo-em/
How it works
Supervised Learning
Supervised Learning
Supervised Learning General Rule Y = M*x + b
Supervised Learning
Unsupervised Learning
Unsupervised Learning
Unsupervised Learning
Support Vector Machine
SVM
Anomaly detection
Anomaly detection
Anomaly detection
Anomaly detection
Training Inference
Features
Collect Train Classify
Data 1. Train (60%) 2. Test (20%) 3. Validation (20%)
Can we generalise?
None
None
None
Tiago Martinho @martinho_t tiagomartinho Thank you!