Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Retrieve_rerank_and_rewrite_Soft_template_based...
Search
MARUYAMA
August 15, 2018
0
87
Retrieve_rerank_and_rewrite_Soft_template_based_neural_summarization.pdf
MARUYAMA
August 15, 2018
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Invisible Side of Design
smashingmag
302
51k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
The Cost Of JavaScript in 2023
addyosmani
54
9k
Designing for humans not robots
tammielis
254
26k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization Ziqiang
Cao, Wenjie Li, Furu Wei, Sujian Li Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.152-161, 2018 Nagaoka University of Technology Takumi Maruyama Literature review:
Ø template-based approachseq2seq Ø Informativeness, SOTA
Ø template ,
Ø “Seq2seq models tend to lose control sometimes” •
'# ( • '# )" Ø Template based summarization • -% • $+,template !* & Template: [REGION] shares [open/close] [NUMBER] percent [lower/higher]
Ø Soft-template based neural summarization • seq2seqtemplate •
… • Soft-templates
Ø Modules • Retrieve: • Rerank: Retrieve
• Rewrite: Rerank template
Ø Retrieve • Lucene (! ) • (over
3M) ! • "30 https://lucene.apache.org/
ØJointly Rerank and Rewrite • Rerank Bilinear networksaliency
• Rewrite x : , y*: , r : soft-templates (Retrieve ) Actual saliency : s*(r, y*) = ROUGE(r, y*) Saliency :
ØJointly Rerank and Rewrite • Learning
Ø Dataset Gigaword corpus
Ø Rerank -> Rewrite Rerank + Rewrite
Ø Soft-template"& Rondom ' First Retrieve ! $#
Max Retrieve %!$# , ROUGE$# Optimal %! ROUGE$# Rerank Rerank !$#
Ø Linguistic quality evaluation LEN_DIF !$& & &) LESS_3
3*(# & " COPY & & *( ' NEW_NE !$&& +% "
Ø template-based + seq2seq model Ø Soft-templates
,
None
None