Retrieve_rerank_and_rewrite_Soft_template_based_neural_summarization.pdf

A3ea3bc5dde6ae2dd6eae71da9c418b0?s=47 MARUYAMA
August 15, 2018
43

 Retrieve_rerank_and_rewrite_Soft_template_based_neural_summarization.pdf

A3ea3bc5dde6ae2dd6eae71da9c418b0?s=128

MARUYAMA

August 15, 2018
Tweet

Transcript

  1. Retrieve, Rerank and Rewrite: Soft Template Based Neural Summarization Ziqiang

    Cao, Wenjie Li, Furu Wei, Sujian Li Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.152-161, 2018 Nagaoka University of Technology Takumi Maruyama Literature review:
  2.  Ø template-based approachseq2seq Ø Informativeness, SOTA   

    Ø template ,   
  3.  Ø “Seq2seq models tend to lose control sometimes” •

    '# ( • '# )" Ø Template based summarization • -%   • $+,template !*  &  Template: [REGION] shares [open/close] [NUMBER] percent [lower/higher]
  4.  Ø Soft-template based neural summarization • seq2seqtemplate  •

          … •     Soft-templates
  5.  Ø Modules • Retrieve:   • Rerank: Retrieve

       • Rewrite: Rerank template  
  6.  Ø Retrieve • Lucene (! ) •  (over

    3M) ! • "30  https://lucene.apache.org/
  7.  ØJointly Rerank and Rewrite • Rerank Bilinear networksaliency 

    • Rewrite x : , y*: , r : soft-templates (Retrieve ) Actual saliency : s*(r, y*) = ROUGE(r, y*) Saliency :
  8.  ØJointly Rerank and Rewrite • Learning

  9.  Ø Dataset Gigaword corpus

  10.  Ø  Rerank -> Rewrite Rerank + Rewrite

  11.  Ø Soft-template"& Rondom  ' First Retrieve ! $#

    Max Retrieve %!$# , ROUGE$# Optimal %! ROUGE$# Rerank Rerank  !$#
  12.  Ø Linguistic quality evaluation LEN_DIF !$& & &) LESS_3

    3*(# & " COPY & & *( ' NEW_NE !$&&   +% "
  13.  Ø template-based + seq2seq model  Ø Soft-templates 

    ,   
  14. None
  15. None