), y, plus (sub1 (x), add1 (y))) = eq (x, 0 ) ∧ (y ∨ plus (sub1 (x), add1 (y))) = eq (x, 1) ∧ (y ∨ plus (x, y)) = x ∧ 1 ∧ (y ∨ plus (x, y)) = x ∧ (y ∨ plus (x, y)) plus (x, y) = cond (eq (x, 0 ), y, plus (sub1 (x), add1 (y))) = eq (x, 0 ) ∧ (y ∨ plus (sub1 (x), add1 (y))) = eq (x, 1) ∧ (y ∨ plus (x, y)) = x ∧ 1 ∧ (y ∨ plus (x, y)) = x ∧ (y ∨ plus (x, y)) plus (x, y) = cond (eq (x, 0 ), y, plus (sub1 (x), add1 (y))) = eq (x, 0 ) ∧ (y ∨ plus (sub1 (x), add1 (y))) = eq (x, 1) ∧ (y ∨ plus (x, y)) = x ∧ 1 ∧ (y ∨ plus (x, y)) = x ∧ (y ∨ plus (x, y)) plus (x, y) = cond (eq (x, 0 ), y, plus (sub1 (x), add1 (y))) = eq (x, 0 ) ∧ (y ∨ plus (sub1 (x), add1 (y))) = eq (x, 1) ∧ (y ∨ plus (x, y)) = x ∧ 1 ∧ (y ∨ plus (x, y)) = x ∧ (y ∨ plus (x, y)) plus (x, y) = cond (eq (x, 0 ), y, plus (sub1 (x), add1 (y))) = eq (x, 0 ) ∧ (y ∨ plus (sub1 (x), add1 (y))) = eq (x, 1) ∧ (y ∨ plus (x, y)) = x ∧ 1 ∧ (y ∨ plus (x, y)) = x ∧ (y ∨ plus (x, y))