Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニング - グラフ構造の諸指標
Search
Y. Yamamoto
PRO
June 20, 2025
Science
0
250
データマイニング - グラフ構造の諸指標
1. グラフの大きさ
2. 密度
3. 連結性
4. 次数の分布
Y. Yamamoto
PRO
June 20, 2025
Tweet
Share
More Decks by Y. Yamamoto
See All by Y. Yamamoto
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
260
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
440
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
660
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
150
データマイニング - ウェブとグラフ
trycycle
PRO
0
230
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
データマイニング - コミュニティ発見
trycycle
PRO
0
200
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データマイニング - ノードの中心性
trycycle
PRO
0
320
Other Decks in Science
See All in Science
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
370
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
140
Lean4による汎化誤差評価の形式化
milano0017
1
430
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
MCMCのR-hatは分散分析である
moricup
0
590
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
KH Coderチュートリアル(スライド版)
koichih
1
58k
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
330
2025-05-31-pycon_italia
sofievl
0
140
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
250
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
930
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Are puppies a ranking factor?
jonoalderson
1
2.7k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
88
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Being A Developer After 40
akosma
91
590k
Transcript
グラフ構造の諸指標 ⼭本 祐輔 名古屋市⽴⼤学 データサイエンス研究科
[email protected]
第10回 データマイニング (グラフ分析入門) ⼭本祐輔
クリエイティブコモンズライセンス (CC BY-NC-SA 4.0)
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体 ノードの 重要度評価
コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
グラフを「把握したい」ケース グラフを把握したい グラフ 全体 ノードの 重要度評価 コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
はじめにグラフ全体の特徴を理解することは重要 ノード 単体 グラフの 部分構造
グラフの⼤きさを⽰す指標: ノード数 グラフに含まれるノードの数 1 0 2 3 4 5 |
V | = 6 # NetworkXを使う場合 V = G.nodes() len(V) # 以下でもOK G.number_of_nodes()
グラフの⼤きさを⽰す指標: 直径 (diameter) グラフに属するノード間の距離の最大値 1 0 2 3 4 5
(最も離れているノード同⼠の距離) 1 0 4 2 3 5 d = 3 d = 1
グラフの⼤きさを⽰す指標: 直径 (diameter) d = ? グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5
グラフの⼤きさを⽰す指標: 直径 (diameter) d = 3 グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5 # NetworkXを使う場合 nx.diameter(G)
余談: 離⼼数 (eccentricity) 注目ノードから他ノードへの距離の最大値 1 0 2 3 4 5
ノード0の離⼼数 = 3 1 0 2 3 4 5 ノード2の離⼼数 = 2 グラフの直径とは「グラフ中のノード離心数の最大値」
グラフの⼤きさを⽰す指標: 半径 (radius) グラフに属するノードの離心数の最小値 1 0 2 3 4 5
1 0 4 2 3 5 半径r = 2 r = 1 (直径d = 3) (直径d = 1)
グラフの⼤きさを⽰す指標: 半径 (radius) r = ? 1 0 4 2
3 5 グラフに属するノードの離心数の最小値
グラフの⼤きさを⽰す指標: 半径 (radius) r = 3 グラフに属するノードの離心数の最小値 1 0 4
2 3 5 # NetworkXを使う場合 nx.radius(G)
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 1 0 2 3 4 5
ノード集合をV、 エッジ集合をEとすると = | E | | V | C2 密度 密度 = ! "#$ nx.density(G) # NetworkXを使う場合
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 密度 = ! !"# = 0.4
1 0 4 2 3 5 1 0 4 2 3 5 密度 = 1
完全グラフ(complete graph) グラフ中の全ノード間にエッジが張られている グラフを完全グラフと呼ぶ 1 0 4 2 3 5
密度 = 1
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
1 0 4 2 3 5 ⾮連結グラフ
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
nx.is_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
1 0 4 2 3 5 強連結でない
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
nx.is_strongly_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 ノード2の次数 = 3 ノード4の次数 = 1
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 G.degree[2] # NetworkXを使う場合 # ノード2の次数(=3)を返す
同じノード数,密度を持つのに次数分布が異なるグラフの例
Hands-on タイム 以下のURLにアクセスして, 第10回のクイズを解いてみよう https://graphnote.hontolab.org/ 23
回 実施日 トピック 9 06/13 グラフデータ 10 06/20 グラフ構造の諸指標 11
06/27 ノードの中心性 12 07/04 コミュニティ発見 13 07/11 ウェブグラフ 14 07/18 グラフ埋め込み 15 07/25 総合演習 – 社会ネットワーク分析 授業計画 24