Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニング - グラフ構造の諸指標
Search
Y. Yamamoto
PRO
June 20, 2025
Science
0
220
データマイニング - グラフ構造の諸指標
1. グラフの大きさ
2. 密度
3. 連結性
4. 次数の分布
Y. Yamamoto
PRO
June 20, 2025
Tweet
Share
More Decks by Y. Yamamoto
See All by Y. Yamamoto
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
52
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
550
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
120
データマイニング - ウェブとグラフ
trycycle
PRO
0
210
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
データマイニング - コミュニティ発見
trycycle
PRO
0
180
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データマイニング - ノードの中心性
trycycle
PRO
0
310
Other Decks in Science
See All in Science
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
140
Algorithmic Aspects of Quiver Representations
tasusu
0
100
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
430
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
240
Ignite の1年間の軌跡
ktombow
0
180
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
120
研究って何だっけ / What is Research?
ks91
PRO
2
160
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
380
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
130
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
KATA
mclloyd
PRO
32
15k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
82
RailsConf 2023
tenderlove
30
1.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Why Our Code Smells
bkeepers
PRO
340
57k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Docker and Python
trallard
46
3.7k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
グラフ構造の諸指標 ⼭本 祐輔 名古屋市⽴⼤学 データサイエンス研究科
[email protected]
第10回 データマイニング (グラフ分析入門) ⼭本祐輔
クリエイティブコモンズライセンス (CC BY-NC-SA 4.0)
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体 ノードの 重要度評価
コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
グラフを「把握したい」ケース グラフを把握したい グラフ 全体 ノードの 重要度評価 コミュニティや 特徴的な経路の発⾒ 局所的特徴 ⼤局的特徴
はじめにグラフ全体の特徴を理解することは重要 ノード 単体 グラフの 部分構造
グラフの⼤きさを⽰す指標: ノード数 グラフに含まれるノードの数 1 0 2 3 4 5 |
V | = 6 # NetworkXを使う場合 V = G.nodes() len(V) # 以下でもOK G.number_of_nodes()
グラフの⼤きさを⽰す指標: 直径 (diameter) グラフに属するノード間の距離の最大値 1 0 2 3 4 5
(最も離れているノード同⼠の距離) 1 0 4 2 3 5 d = 3 d = 1
グラフの⼤きさを⽰す指標: 直径 (diameter) d = ? グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5
グラフの⼤きさを⽰す指標: 直径 (diameter) d = 3 グラフに属するノード間の距離の最大値 (最も離れているノード同⼠の距離) 1 0
4 2 3 5 # NetworkXを使う場合 nx.diameter(G)
余談: 離⼼数 (eccentricity) 注目ノードから他ノードへの距離の最大値 1 0 2 3 4 5
ノード0の離⼼数 = 3 1 0 2 3 4 5 ノード2の離⼼数 = 2 グラフの直径とは「グラフ中のノード離心数の最大値」
グラフの⼤きさを⽰す指標: 半径 (radius) グラフに属するノードの離心数の最小値 1 0 2 3 4 5
1 0 4 2 3 5 半径r = 2 r = 1 (直径d = 3) (直径d = 1)
グラフの⼤きさを⽰す指標: 半径 (radius) r = ? 1 0 4 2
3 5 グラフに属するノードの離心数の最小値
グラフの⼤きさを⽰す指標: 半径 (radius) r = 3 グラフに属するノードの離心数の最小値 1 0 4
2 3 5 # NetworkXを使う場合 nx.radius(G)
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 1 0 2 3 4 5
ノード集合をV、 エッジ集合をEとすると = | E | | V | C2 密度 密度 = ! "#$ nx.density(G) # NetworkXを使う場合
グラフの密度 (density) グラフ中のノード間に張ることのできる すべての辺に対する、実際の辺の数の割合 密度 = ! !"# = 0.4
1 0 4 2 3 5 1 0 4 2 3 5 密度 = 1
完全グラフ(complete graph) グラフ中の全ノード間にエッジが張られている グラフを完全グラフと呼ぶ 1 0 4 2 3 5
密度 = 1
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
1 0 4 2 3 5 ⾮連結グラフ
連結性 グラフ中の任意のノード間に経路が存在する とき、そのグラフは「連結グラフ」という 1 0 4 2 3 5 連結グラフ
nx.is_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
1 0 4 2 3 5 強連結でない
強連結 有向グラフ中の任意のノード間に有向経路が 存在するとき、そのグラフは「強連結」である 1 0 4 2 3 5 強連結である
nx.is_strongly_connected(G) # NetworkXを使う場合 # 左のグラフにはTrueを返す
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 ノード2の次数 = 3 ノード4の次数 = 1
次数分布 次数 (degree) ノードに接続しているエッジの数 次数分布 § グラフに属するノードの次数の分布 § ⼤きさや密度が同じでも次数分布が異なることもある 1
0 2 3 4 G.degree[2] # NetworkXを使う場合 # ノード2の次数(=3)を返す
同じノード数,密度を持つのに次数分布が異なるグラフの例
Hands-on タイム 以下のURLにアクセスして, 第10回のクイズを解いてみよう https://graphnote.hontolab.org/ 23
回 実施日 トピック 9 06/13 グラフデータ 10 06/20 グラフ構造の諸指標 11
06/27 ノードの中心性 12 07/04 コミュニティ発見 13 07/11 ウェブグラフ 14 07/18 グラフ埋め込み 15 07/25 総合演習 – 社会ネットワーク分析 授業計画 24