Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
良書紹介04_生命科学の実験デザイン
Search
ぶんちん
September 04, 2025
Science
0
85
良書紹介04_生命科学の実験デザイン
ぶんちん
September 04, 2025
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
160
良書紹介03_ データ分析読解の技術
bunnchinn3
0
46
MVP未満からの成果獲得
bunnchinn3
0
53
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
59
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
89
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
74
統計知識と実務のギャップ
bunnchinn3
0
110
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
180
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
110
Other Decks in Science
See All in Science
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
100
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
4
320
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
340
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
630
My Little Monster
juzishuu
0
110
mathematics of indirect reciprocity
yohm
1
190
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
350
Explanatory material
yuki1986
0
410
凸最適化からDC最適化まで
santana_hammer
1
300
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
200
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
140
サイゼミ用因果推論
lw
1
7.5k
Featured
See All Featured
Thoughts on Productivity
jonyablonski
70
4.9k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
GraphQLとの向き合い方2022年版
quramy
49
14k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Typedesign – Prime Four
hannesfritz
42
2.8k
Speed Design
sergeychernyshev
32
1.1k
A Tale of Four Properties
chriscoyier
160
23k
Gamification - CAS2011
davidbonilla
81
5.5k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Transcript
DS初心者向け 知名度は低いけどオススメの良書紹介4 ~効果的な現実世界のデータ収集~ ぶんちん 2025年9月4日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん データサイエンティスト集会の主催 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 e ラ
ー ニ ン グ の イ ラ ス ト ( 男 性 ) 困 っ た 顔 で 働 く 会 社 員 の イ ラ ス ト ( 男 性 ) 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやってもらったら、 成果が増えるのでは? 特に非専門家向けの データサイエンス活用教育 2
良い書籍はたくさんあるけど。。。 良書は人気になりやすい 3 人気書籍 知られていない本でも良書がある 今回はそれを紹介
データ収集のデザイン Garbage in, garbage out ⇒『無意味なデータ(ゴミ)』を入力する 『無意味な結果(ゴミ)』が出力される ゴミにならないよう設計していますか? 特に現実世界のデータ取得! 4
丸投げNG
現実世界のデータ取得の難しさ 全てのデータに明確な意図を持った設計が必要 ⇒ 逆に意図しないデータは取得できない どのようなデータを取りたいのか どのように測定するのか どのような条件で記録するのか
どのくらいの期間・量のデータを記録するのか 5 データ取得は高コスト(カネ・時間・手間) ⇒ 追加・変更が困難 なんとなくで条件を決めるのは不適切
データ取得条件を検討する分野はないのか 実験の設計! 6 実験 =未知を明らかにするための 科学的アプローチ方法
生命科学の実験デザイン 「生命科学」とのタイトルだが、分野に関わ らず有用な内容 「実験デザイン」を扱った和書は本書を含め て2冊しか見つからず、どちらもバイオ系 成果を出すための実験(データ取得条件)の 設計に必要な要件を知ることができる
7
目次 1. デザインはなぜ大切か 2. 仮説を明確にする 3. デザインの大枠を選ぶ 4. 個体間のばらつき、反復、サンプリング 5.
偽反復 6. サンプルサイズ、検出力、効果的なデザイン 7. 最もシンプルな実験デザイン―1因子完全ランダム化デザイン 8. 複数の因子をもつ実験―複因子デザイン 9. 完全ランダム化を超えて―ブロックと共変数 10.被験体内デザイン 11.測定―良質なデータをとるために 8 ここにコンセプトが集約 コンセプト ⇒ 具体的対応
誤った思い込み どのようにデータをとるかは重要ではない.統計的 な「応急処置」は必ずあるので,どのようにとった データでも解析はできる. とにかくデータをたくさんとりさえすれば,何かし らおもしろい結果が出てくるし,非常に微妙な効果 でさえも検出できる. 9 現実はそんなに甘くない!
大学(アカデミック)の出版社だけど キレッキレな表現 1.2 貧弱なデザインの害悪 1.2 .1 時間と金の無駄遣い
劣悪な実験デザインで時とエネルギーを無駄遣いするのが愚 かであることは言うまでもない. 10 地に足の着いた話が多く、表現もわかりやすい ⇒基礎統計と並行して学ぶべき本では?
なんで知名度が低い領域なの? 建前:本書の内容は大学での研究(卒論・修論・博 士論文)に取り組む中で、全員が身に着けている 11 本当? • 体系化されて説明されている書籍が少ないのに? • 実験しない人も学んでいる? •
仕事でこの考え方、使えている?
実験デザインの重要性 できているようで、実はできていない領域 課題オーナーに丸投げはNG 成果を出すためには、押さえておく分野 個人的にビジネスでも有用だと思う 12
データ取得のコア部分に 積極的に関与しませんか?