Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
良書紹介04_生命科学の実験デザイン
Search
ぶんちん
September 04, 2025
Science
0
110
良書紹介04_生命科学の実験デザイン
ぶんちん
September 04, 2025
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
LTのはじめかた(VRChat技術系界隈を想定)
bunnchinn3
0
50
“成果”を出すためのプレゼン準備 プレゼン資料作成の前にやること
bunnchinn3
1
190
良書紹介03_ データ分析読解の技術
bunnchinn3
0
58
MVP未満からの成果獲得
bunnchinn3
0
60
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
78
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
99
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
85
統計知識と実務のギャップ
bunnchinn3
0
130
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
210
Other Decks in Science
See All in Science
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
2025-05-31-pycon_italia
sofievl
0
120
力学系から見た現代的な機械学習
hanbao
3
3.7k
My Little Monster
juzishuu
0
340
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
22k
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
150
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
データベース03: 関係データモデル
trycycle
PRO
1
320
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.8k
Into the Great Unknown - MozCon
thekraken
40
2.2k
The Cult of Friendly URLs
andyhume
79
6.7k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
65
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
410
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
Writing Fast Ruby
sferik
630
62k
Balancing Empowerment & Direction
lara
5
820
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Music & Morning Musume
bryan
46
7k
Odyssey Design
rkendrick25
PRO
0
440
Transcript
DS初心者向け 知名度は低いけどオススメの良書紹介4 ~効果的な現実世界のデータ収集~ ぶんちん 2025年9月4日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん データサイエンティスト集会の主催 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 e ラ
ー ニ ン グ の イ ラ ス ト ( 男 性 ) 困 っ た 顔 で 働 く 会 社 員 の イ ラ ス ト ( 男 性 ) 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやってもらったら、 成果が増えるのでは? 特に非専門家向けの データサイエンス活用教育 2
良い書籍はたくさんあるけど。。。 良書は人気になりやすい 3 人気書籍 知られていない本でも良書がある 今回はそれを紹介
データ収集のデザイン Garbage in, garbage out ⇒『無意味なデータ(ゴミ)』を入力する 『無意味な結果(ゴミ)』が出力される ゴミにならないよう設計していますか? 特に現実世界のデータ取得! 4
丸投げNG
現実世界のデータ取得の難しさ 全てのデータに明確な意図を持った設計が必要 ⇒ 逆に意図しないデータは取得できない どのようなデータを取りたいのか どのように測定するのか どのような条件で記録するのか
どのくらいの期間・量のデータを記録するのか 5 データ取得は高コスト(カネ・時間・手間) ⇒ 追加・変更が困難 なんとなくで条件を決めるのは不適切
データ取得条件を検討する分野はないのか 実験の設計! 6 実験 =未知を明らかにするための 科学的アプローチ方法
生命科学の実験デザイン 「生命科学」とのタイトルだが、分野に関わ らず有用な内容 「実験デザイン」を扱った和書は本書を含め て2冊しか見つからず、どちらもバイオ系 成果を出すための実験(データ取得条件)の 設計に必要な要件を知ることができる
7
目次 1. デザインはなぜ大切か 2. 仮説を明確にする 3. デザインの大枠を選ぶ 4. 個体間のばらつき、反復、サンプリング 5.
偽反復 6. サンプルサイズ、検出力、効果的なデザイン 7. 最もシンプルな実験デザイン―1因子完全ランダム化デザイン 8. 複数の因子をもつ実験―複因子デザイン 9. 完全ランダム化を超えて―ブロックと共変数 10.被験体内デザイン 11.測定―良質なデータをとるために 8 ここにコンセプトが集約 コンセプト ⇒ 具体的対応
誤った思い込み どのようにデータをとるかは重要ではない.統計的 な「応急処置」は必ずあるので,どのようにとった データでも解析はできる. とにかくデータをたくさんとりさえすれば,何かし らおもしろい結果が出てくるし,非常に微妙な効果 でさえも検出できる. 9 現実はそんなに甘くない!
大学(アカデミック)の出版社だけど キレッキレな表現 1.2 貧弱なデザインの害悪 1.2 .1 時間と金の無駄遣い
劣悪な実験デザインで時とエネルギーを無駄遣いするのが愚 かであることは言うまでもない. 10 地に足の着いた話が多く、表現もわかりやすい ⇒基礎統計と並行して学ぶべき本では?
なんで知名度が低い領域なの? 建前:本書の内容は大学での研究(卒論・修論・博 士論文)に取り組む中で、全員が身に着けている 11 本当? • 体系化されて説明されている書籍が少ないのに? • 実験しない人も学んでいる? •
仕事でこの考え方、使えている?
実験デザインの重要性 できているようで、実はできていない領域 課題オーナーに丸投げはNG 成果を出すためには、押さえておく分野 個人的にビジネスでも有用だと思う 12
データ取得のコア部分に 積極的に関与しませんか?