Upgrade to Pro — share decks privately, control downloads, hide ads and more …

非一重項クォーク演算子の異常次元に対する5ループQCD補正 / On the 5-loop Q...

Takahiro Ueda
September 17, 2019

非一重項クォーク演算子の異常次元に対する5ループQCD補正 / On the 5-loop QCD corrections to anomalous dimensions of low-N non-singlet quark operators

摂動論的QCDにおいて,ツイスト2スピンN複合演算子の振る舞いは,深非弾性散乱の演算子積展開による解析などの応用があり,重要な研究対象である.本研究では,N=2およびN=3のフレーバー非一重項のクォーク演算子の異常次元に対するα_s^5のオーダー(N^4LO)の輻射補正項について調べた.計算は5ループのダイアグラムの発散項をR^*-operationにより4ループ以下のダイアグラムの和として書き直し,それをForcerライブラリを用いて解析的に評価することで行った.

Takahiro Ueda

September 17, 2019
Tweet

More Decks by Takahiro Ueda

Other Decks in Science

Transcript

  1. 非一重項クォーク演算子の 異常次元に対する ループQCD補正 植田高寛 (成蹊大理工) with F. HerzogA, S. MochB,

    B. RuijlC, J.A.M. VermaserenA and A. VogtD NikhefA, U. HamburgB, ETH ZurichC, U. of LiverpoolD Based on PLB ( ) 6, arXiv: 8 . 8 8 [hep-ph] 日本物理学会 年秋季大会 年 月 日@山形大
  2. Introduction (繰り込まれた)演算子Orem の異常次元γO : dOrem dlnµ2 = −γO Orem スケール発展を記述

    (スケーリング次元の正準次元からのずれ) 技術的には繰り込み定数Zから計算 Obare = Z O Orem /
  3. Non-singlet quark operators Twist- フレーバー非一重項クォーク演算子: Ons,α µ1,...,µN = ¯ ψλαγ{µ1

    D µ2 ...D µN}ψ D µ : covariant derivative λα: generator of the (light-quark) flavour SU(nf ) ... 深非弾性散乱の演算子積展開で重要 /
  4. Non-singlet quark operators Twist- フレーバー非一重項クォーク演算子: Ons,α µ1,...,µN = ¯ ψλαγ{µ1

    D µ2 ...D µN}ψ 異常次元(あるいは繰り込み定数)は次の量と関連 /
  5. Non-singlet quark operators Twist- フレーバー非一重項クォーク演算子: Ons,α µ1,...,µN = ¯ ψλαγ{µ1

    D µ2 ...D µN}ψ 異常次元(あるいは繰り込み定数)は次の量と関連 • Mellin-N moments of the splitting function cf. my talk on Sep 8 @ JPS meeting /
  6. Non-singlet quark operators Twist- フレーバー非一重項クォーク演算子: Ons,α µ1,...,µN = ¯ ψλαγ{µ1

    D µ2 ...D µN}ψ 異常次元(あるいは繰り込み定数)は次の量と関連 • Mellin-N moments of the splitting function cf. my talk on Sep 8 @ JPS meeting • The leading large-N coefficient Aq γq (N) = Aq lnN +... is the light-like cusp anomalous dimension e.g., resummation of large logs from soft radiation /
  7. Method Operator matrix element (OME) P P P2 = 0

    この繰り込みを考えることで, 演算子の 繰り込み定数(つまり異常次元)が決定される See, for example, Peskin & Schroeder Chap. 8 /
  8. Method Operator matrix element (OME) P P P2 = 0

    この繰り込みを考えることで, 演算子の 繰り込み定数(つまり異常次元)が決定される See, for example, Peskin & Schroeder Chap. 8 @ loops: Non-singlet: computed up to N = 16 ⇒ approx. splitting funcs. Moch, Ruijl, TU, Vermaseren, Vogt ’ Singlet: partial results Moch, Ruijl, TU, Vermaseren, Vogt ’ 8 /
  9. Method Operator matrix element (OME) P P P2 = 0

    この繰り込みを考えることで, 演算子の 繰り込み定数(つまり異常次元)が決定される See, for example, Peskin & Schroeder Chap. 8 @ loops: 繰り込み定数を ループ(!)で計算する必要 これは可能だろうか...? /
  10. Infrared rearrangement Superficial (or overall) UV divergence: すべてのループ 運動量が∞になる領域に起因 すべての質量スケール(粒子の質量、外部運動量)が

    無視できる Vladimirov ’8 sup.UV div. = sup.UV div. = sup.UV div. = sup.UV div. MSスキームのような繰り込みスキームを用いると Log発散するダイアグラムは(superficial UV divergenceに ついては) 質量に依らない. ダイアグラムを変形してよい /
  11. Computing pole parts div. = sup.UV div. + UV/IR subdivergences

    L-loops L-loops lower loops = sup.UV div. 6/
  12. Computing pole parts div. = sup.UV div. + UV/IR subdivergences

    L-loops effectively (L −1)-loops lower loops = sup.UV div. = sup.UV div. integrate -loop 6/
  13. Computing pole parts div. = sup.UV div. + UV/IR subdivergences

    L-loops effectively (L −1)-loops lower loops = sup.UV div. = sup.UV div. integrate -loop R∗ (local) R∗-operation: BPHZ R-operationの一般化 UVとIR両方をdiagrammaticalに同定/差っ引くことができる Chetyrkin, Tkachov ’8 ; Chetyrkin, Smirnov ’8 , ’8 ; Extension for arbitrary numerator structure: Herzog, Ruijl ’ 6/
  14. Computing pole parts div. = sup.UV div. + UV/IR subdivergences

    L-loops effectively (L −1)-loops lower loops = sup.UV div. = sup.UV div. integrate -loop R∗ (local) R∗-operation: BPHZ R-operationの一般化 UVとIR両方をdiagrammaticalに同定/差っ引くことができる Chetyrkin, Tkachov ’8 ; Chetyrkin, Smirnov ’8 , ’8 ; Extension for arbitrary numerator structure: Herzog, Ruijl ’ ループダイアグラムのpole partの計算が ループのmassless propagator-typeダイアグラム(の有限項)に 6/
  15. May the F be with you F : ループまでのmassless propagator-type

    scalar Feynman積分を解析的に行うF プログラム https://github.com/benruijl/forcer Ruijl, TU, Vermaseren ’ /
  16. May the F be with you F : ループまでのmassless propagator-type

    scalar Feynman積分を解析的に行うF プログラム https://github.com/benruijl/forcer Ruijl, TU, Vermaseren ’ Example: Q Q p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 Q2 = 0 dD p1 dD p2 dD p3 dD p4 (2Q · p2 )−n12 (2p1 · p4 )−n13 (2Q · p3 )−n14 (p2 1 )n1 ...(p2 11 )n11 (n1,...,n11: integers, n12,...,n14: non-positive integers) /
  17. May the F be with you F : ループまでのmassless propagator-type

    scalar Feynman積分を解析的に行うF プログラム https://github.com/benruijl/forcer Ruijl, TU, Vermaseren ’ Example: Q Q p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 Q2 = 0 dD p1 dD p2 dD p3 dD p4 (2Q · p2 )−n12 (2p1 · p4 )−n13 (2Q · p3 )−n14 (p2 1 )n1 ...(p2 11 )n11 (n1,...,n11: integers, n12,...,n14: non-positive integers) マスター積分(MI)へのreductionを行い、 でLaurent展開 (D = 4−2 ) MIs all known: Baikov, Chetyrkin ’ ; Lee, Smirnov, Smirnov ’ /
  18. May the F be with you F : ループまでのmassless propagator-type

    scalar Feynman積分を解析的に行うF プログラム https://github.com/benruijl/forcer Ruijl, TU, Vermaseren ’ Applications include: • -loop QCD propagators and vertices Ruijl, TU, Vermaseren, Vogt ’ • -loop QCD splitting functions Davies, Vogt, Ruijl, TU, Vermaseren ’ 6; Moch, Ruijl, TU, Vermaseren, Vogt ’ , ’ 8 F + IRR: • -loop QCD β function Herzog, Ruijl, TU, Vermaseren, Vogt ’ ; Chetyrkin, Falcioni, Herzog, Vermaseren ’ • -loop Higgs decay to gluons Herzog, Ruijl, TU, Vermaseren, Vogt ’ • - and -loop anomalous dimensions of Weinberg operator de Vries, Falcioni, Herzog, Ruijl ’ /
  19. Calculation • -loop OME diagram generation: Q Nogueira ’ •

    Symbolic manipulation: F /TF Vermaseren ’ ; Tentyukov, Vermaseren ’ ; Kuipers, TU, Vermaseren, Vollinga ’ ; Ruijl, TU, Vermaseren ’ 8/
  20. Calculation • -loop OME diagram generation: Q Nogueira ’ •

    Symbolic manipulation: F /TF Vermaseren ’ ; Tentyukov, Vermaseren ’ ; Kuipers, TU, Vermaseren, Vollinga ’ ; Ruijl, TU, Vermaseren ’ • IRR ( loop to loop): implementation of local R∗ in F 8/
  21. Calculation • -loop OME diagram generation: Q Nogueira ’ •

    Symbolic manipulation: F /TF Vermaseren ’ ; Tentyukov, Vermaseren ’ ; Kuipers, TU, Vermaseren, Vollinga ’ ; Ruijl, TU, Vermaseren ’ • IRR ( loop to loop): implementation of local R∗ in F • Perform -loop integrals by F Ruijl, TU, Vermaseren ’ 8/
  22. Result: γ(4)+ ns (N = 2) γ(4)+ ns (N =

    2) = CF d(4) F A NF + 23968 81 + 77056 9 ζ7 + 176320 81 ζ5 − 733504 81 ζ3 + 6400 3 ζ2 3 +CF d(4) AA NA − 15344 81 + 19040 9 ζ7 − 58400 27 ζ5 + 704 3 ζ4 + 12064 27 ζ3 + 6016 3 ζ2 3 +C5 F + 9306376 19683 +8512ζ7 − 557440 81 ζ5 − 802784 729 ζ3 + 12544 9 ζ2 3 +CA d(4) F A NF − 82768 81 −12768ζ7 − 140800 27 ζ6 + 1292960 81 ζ5 − 10912 9 ζ4 + 555520 81 ζ3 − 84352 27 ζ2 3 +CA C4 F − 81862744 19683 −19936ζ7 + 35200 9 ζ6 + 142240 27 ζ5 − 59840 81 ζ4 + 1600592 243 ζ3 −3072ζ2 3 +C2 A C3 F + 63340406 6561 +15680ζ7 − 35200 9 ζ6 + 61696 27 ζ5 − 229472 81 ζ4 − 1003192 243 ζ3 + 30976 9 ζ2 3 +C3 A C2 F − 220224724 19683 − 331856 27 ζ7 − 123200 27 ζ6 + 3640624 243 ζ5 + 170968 27 ζ4 − 4115536 729 ζ3 − 70400 27 ζ2 3 +C4 A CF + 266532611 39366 + 178976 27 ζ7 + 334400 81 ζ6 − 3102208 243 ζ5 − 221920 81 ζ4 + 2588144 729 ζ3 + 74912 81 ζ2 3 + nf d(4) F A NF + 22096 27 −2464ζ7 + 25600 27 ζ6 − 217280 81 ζ5 − 512 9 ζ4 + 43712 81 ζ3 − 25088 27 ζ2 3 + nf CF d(4) FF NF − 170752 81 + 35840 9 ζ7 − 650240 81 ζ5 + 328832 81 ζ3 + 8192 9 ζ2 3 + nf C4 F + 1824964 19683 + 8960 3 ζ7 − 6400 9 ζ6 − 16480 81 ζ5 + 21248 81 ζ4 − 463520 243 ζ3 + 6656 9 ζ2 3 + nf CA d(4) FF NF + 207824 81 − 29120 9 ζ7 + 70400 27 ζ6 − 522880 81 ζ5 − 5632 9 ζ4 + 251392 81 ζ3 + 15872 27 ζ2 3 + nf CA C3 F − 3375082 6561 − 4480 3 ζ7 + 8000 3 ζ6 − 458032 81 ζ5 + 48256 81 ζ4 + 420068 243 ζ3 − 3968 3 ζ2 3 + nf C2 A C2 F + 15291499 13122 + 11200 27 ζ7 + 13600 27 ζ6 − 252544 243 ζ5 − 114536 27 ζ4 + 1561600 243 ζ3 + 24896 27 ζ2 3 + nf C3 A CF − 48846580 19683 − 39088 27 ζ7 − 184000 81 ζ6 + 1389080 243 ζ5 + 274768 81 ζ4 − 4314308 729 ζ3 − 27808 81 ζ2 3 + n2 f d(4) FF NF − 43744 81 − 12800 27 ζ6 + 52480 81 ζ5 + 1792 9 ζ4 + 35648 81 ζ3 − 2048 27 ζ2 3 + n2 f C3 F + 1082297 6561 − 3200 9 ζ6 + 55552 81 ζ5 + 1072 81 ζ4 − 145792 243 ζ3 + 1792 9 ζ2 3 + n2 f CA C2 F + 332254 2187 + 1600 27 ζ6 − 28544 81 ζ5 + 20752 27 ζ4 − 85016 243 ζ3 − 13952 27 ζ2 3 + n2 f C2 A CF + 631400 6561 + 22400 81 ζ6 − 53344 243 ζ5 −784ζ4 + 214268 243 ζ3 + 25472 81 ζ2 3 + n3 f C2 F + 265510 19683 + 512 27 ζ5 − 128 3 ζ4 + 11872 729 ζ3 + n3 f CA CF + 168677 19683 − 4096 81 ζ5 + 2752 81 ζ4 + 11872 729 ζ3 + n4 f CF − 5504 19683 + 128 81 ζ4 − 1024 729 ζ3 /
  23. Result: γ(4)− ns (N = 3) γ(4)− ns (N =

    3) = CF d(4) F A NF − 231575 36 + 200410 9 ζ7 + 2927225 162 ζ5 − 6351445 324 ζ3 − 23210 3 ζ2 3 +CF d(4) AA NA − 81725 162 + 48125 36 ζ7 − 52025 18 ζ5 + 1100 3 ζ4 + 33505 18 ζ3 + 7000 3 ζ2 3 +C5 F + 81472935625 80621568 + 34685 2 ζ7 − 3395975 162 ζ5 + 99382175 23328 ζ3 − 9650 9 ζ2 3 +CA d(4) F A NF + 165871 54 − 7525 4 ζ7 + 200750 27 ζ6 − 4456145 162 ζ5 − 41800 9 ζ4 + 1816625 162 ζ3 + 196880 27 ζ2 3 +CA C4 F − 286028134219 80621568 − 155155 4 ζ7 + 55000 9 ζ6 + 2468075 108 ζ5 − 134090 81 ζ4 + 23916529 7776 ζ3 +4490ζ2 3 +C2 A C3 F + 20173099267 3359232 + 139895 4 ζ7 − 79750 9 ζ6 + 1972075 216 ζ5 + 732787 1296 ζ4 − 15401281 864 ζ3 − 63830 9 ζ2 3 +C3 A C2 F − 166662991819 20155392 − 2127335 108 ζ7 + 72875 54 ζ6 − 30994565 3888 ζ5 + 103763 54 ζ4 + 36397493 2916 ζ3 + 133990 27 ζ2 3 +C4 A CF + 75932079965 10077696 + 199640 27 ζ7 + 163625 81 ζ6 − 9417425 1944 ζ5 − 1791229 1296 ζ4 − 27693563 23328 ζ3 − 96700 81 ζ2 3 + nf d(4) F A NF + 297889 162 −910ζ7 − 36500 27 ζ6 − 122780 81 ζ5 + 3700 9 ζ4 + 154970 81 ζ3 − 62600 27 ζ2 3 + nf CF d(4) FF NF − 24385 27 + 135380 9 ζ7 − 1622600 81 ζ5 + 334010 81 ζ3 + 8480 9 ζ2 3 + nf C4 F + 1776521549 40310784 + 14000 3 ζ7 − 10000 9 ζ6 − 30325 81 ζ5 + 33290 81 ζ4 − 1332919 486 ζ3 + 5000 9 ζ2 3 + nf CA d(4) FF NF + 241835 162 − 71960 9 ζ7 + 110000 27 ζ6 − 316900 81 ζ5 − 10780 9 ζ4 + 333487 81 ζ3 + 30560 27 ζ2 3 + nf CA C3 F − 3737356319 3359232 − 7000 3 ζ7 + 14000 3 ζ6 − 1693715 162 ζ5 − 262069 648 ζ4 + 2327111 432 ζ3 − 1280 3 ζ2 3 + nf C2 A C2 F + 5637513931 3359232 + 50155 108 ζ7 − 20375 27 ζ6 + 508820 243 ζ5 − 457499 108 ζ4 + 2711207 486 ζ3 − 5020 27 ζ2 3 + nf C3 A CF − 8766012215 2519424 − 250915 108 ζ7 − 222250 81 ζ6 + 1808870 243 ζ5 + 2848403 648 ζ4 − 45697231 5832 ζ3 − 1195 81 ζ2 3 + n2 f d(4) FF NF − 19435 27 − 20000 27 ζ6 + 70000 81 ζ5 + 3160 9 ζ4 + 53366 81 ζ3 − 3200 27 ζ2 3 + n2 f C3 F + 512848319 1679616 − 5000 9 ζ6 + 86440 81 ζ5 + 9118 81 ζ4 − 57109 54 ζ3 + 2800 9 ζ2 3 + n2 f CA C2 F + 1080083 5832 + 2500 27 ζ6 − 42860 81 ζ5 + 56327 54 ζ4 − 296729 972 ζ3 − 21800 27 ζ2 3 + n2 f C2 A CF + 61747877 419904 + 35000 81 ζ6 − 88990 243 ζ5 − 3503 3 ζ4 + 2496811 1944 ζ3 + 39800 81 ζ2 3 + n3 f C2 F + 28758139 1259712 + 800 27 ζ5 − 610 9 ζ4 + 21673 729 ζ3 + n3 f CA CF + 13729181 1259712 − 6400 81 ζ5 + 4390 81 ζ4 + 14947 729 ζ3 + n4 f CF − 259993 629856 + 200 81 ζ4 − 1660 729 ζ3 /
  24. Analytic results contain... nf : number of flavours Quadratic Casimir

    invariants: CF, CA Quartic Casimir invariants: d(4) FF ≡ dabcd F dabcd F d(4) F A ≡ dabcd F dabcd A d(4) AA ≡ dabcd A dabcd A where dabcd r = 1 6 Tr(Ta r Tb r Tc r Td r +5 permutations) Riemann zeta values: ζ3, ζ4, ζ5, ζ6, ζ7 /
  25. Numerical values for QCD γ+ ns (N = 2,nf =

    0) = 0.2829αs (1+1.0187αs +1.5307α2 s +2.3617α3 s +4.520α4 s +···) ... γ+ ns (N = 2,nf = 3) = 0.2829αs (1+0.8695αs +0.7980α2 s +0.9258α3 s +1.781α4 s +···) γ+ ns (N = 2,nf = 4) = 0.2829αs (1+0.7987αs +0.5451α2 s +0.5215α3 s +1.223α4 s +···) γ+ ns (N = 2,nf = 5) = 0.2829αs (1+0.7280αs +0.2877α2 s +0.1571α3 s +0.849α4 s +···) γ− ns (N = 3,nf = 0) = 0.4421αs (1+1.0153αs +1.4190α2 s +2.0954α3 s +3.954α4 s +···) ... γ− ns (N = 3,nf = 3) = 0.4421αs (1+0.7952αs +0.7183α2 s +0.7607α3 s +1.508α4 s +···) γ− ns (N = 3,nf = 4) = 0.4421αs (1+0.7218αs +0.4767α2 s +0.3921α3 s +1.031α4 s +···) γ− ns (N = 3,nf = 5) = 0.4421αs (1+0.6484αs +0.2310α2 s +0.0645α3 s +0.727α4 s +···) /
  26. Scale dependence -0.07 -0.068 -0.066 -0.064 -0.062 -0.06 10 -1

    1 10 d ln q ns / d ln µf 2 + N = 2 µr 2 / µf 2 NNLO NLO d ln q ns / d ln µf 2 − N = 3 N3LO N4LO µr 2 / µf 2 -0.108 -0.104 -0.1 -0.096 -0.092 10 -1 1 10 αs(µ 2 f ) = 0.2,nf = 4 /
  27. Summary 初めて ループでのTwist- 演算子の 異常次元への寄与を計算 R∗-operations + F : N

    = 2, N = 3の 非一重項クォーク演算子の繰り込み スケール依存性が向上: O(0.1%) /
  28. Parton evolutions qi (x,µ2), ¯ qi (x,µ2) and g(x,µ2) for

    massless quarks, antiquarks of flavour i and gluons nf (anti-)quark distributions decomposed as • q± ns,ik = (qi ± ¯ qi )−(qk ± ¯ qk ), flavour non-singlet, 2(nf −1) components, evolving with P± ns • qv ns = nf i=1 (qi − ¯ qi ): flavour non-singlet (“valence”), evolving with Pv ns = P− ns + Ps ns • qs = nf i=1 (qi + ¯ qi ): flavour singlet, mixing with gluons. Pqq = P+ ns + Pps d dlnµ2 f qs g = Pqq Pqg Pgq Pgg ⊗ qs g Appendix - /
  29. Restoring scale dependence L ≡ ln(µ2 r /µ2 f )

    = 0, from L = 0 results: γ(0) ns (L) = γ(0) ns γ(1) ns (L) = γ(1) ns +β0 Lγ(0) ns γ(2) ns (L) = γ(2) ns +2β0 Lγ(1) ns + β1 L +β2 0 L2 γ(0) ns γ(3) ns (L) = γ(3) ns +3β0 Lγ(2) ns + 2β1 L +3β2 0 L2 γ(1) ns + β2 L + 5 2β1β0 L2 +β3 0 L3 γ(0) ns γ(4) ns (L) = γ(4) ns +4β0 Lγ(3) ns + 3β1 L +6β2 0 L2 γ(2) ns + 2β2 L +7β1β0 L2 +4β3 0 L3 γ(1) ns + β3 L +3β2β0 L2 + 3 2β2 1 L2 + 13 3 β1β2 0 L3 +β4 0 L4 γ(0) ns Appendix - /
  30. Operator matrix element To compute the operator matrix element, Lorentz

    indices of the operator are contracted with a light-like vector ∆: A(N) = ∆µ1 ...∆µN 〈p|O µ1...µN |p〉 ∆2 = 0, p2 = 0 p p Trace taken for the external fermion line Appendix - /
  31. Computing poles K: pole operator: K(G) returns only poles of

    G ∆: UV counterterm operator ∆(G) gives the superficial UV poles of G For logarithmically divergent G: K(G) = ∆(G)+subdiv(G) with ∆(G) = IRR ∆(G ) = K(G )−subdiv(G ) Appendix - /
  32. Approximate splitting functions at N4 LO for leading Nc 8

    1 ) ) in α S x (1−x) P (x) /10 (4) 5 ns n f = 3, Ln c approx. 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 γ+ ns = γ− ns +O 1 Nc Used known large-x and small-x endpoints constraints Appendix - /