Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyra...
Search
Takuto Wada
PRO
October 29, 2024
Programming
10
3.1k
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
2024年10月29日(火)13:00 ~ 14:30
バルテス共催セミナー「開発失敗につながる偏ったテストしてませんか?プロが教える本当に考えるべきテストバランスのとり方」
Takuto Wada
PRO
October 29, 2024
Tweet
Share
More Decks by Takuto Wada
See All by Takuto Wada
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
46
23k
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
45
33k
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
187
110k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
100k
The Clean ArchitectureがWebフロントエンドでしっくりこないのは何故か / Why The Clean Architecture does not fit with Web Frontend
twada
PRO
85
43k
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
37
14k
組織に自動テストを書く文化を根付かせる戦略(2024秋版) / Building Automated Test Culture 2024 Autumn Edition
twada
PRO
15
7.3k
これまでと違う学び方をしたら挫折せずにRustを学べた話 / Programming Rust techramen24conf LT
twada
PRO
36
31k
開発生産性の観点から考える自動テスト(2024/06版) / Automated Test Knowledge from Savanna 202406 Findy dev-prod-con edition
twada
PRO
40
38k
Other Decks in Programming
See All in Programming
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
4.8k
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
37k
Basic Architectures
denyspoltorak
0
160
re:Invent 2025 トレンドからみる製品開発への AI Agent 活用
yoskoh
0
570
愛される翻訳の秘訣
kishikawakatsumi
3
370
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
160
チームをチームにするEM
hitode909
0
430
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
180
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
240
Graviton と Nitro と私
maroon1st
0
160
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
160
Featured
See All Featured
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
120
How to make the Groovebox
asonas
2
1.9k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
73
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
My Coaching Mixtape
mlcsv
0
20
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
How GitHub (no longer) Works
holman
316
140k
Optimizing for Happiness
mojombo
379
70k
30 Presentation Tips
portentint
PRO
1
180
Building AI with AI
inesmontani
PRO
1
610
Transcript
ϐϥϛουɺΞΠεΫϦʔϜίʔϯɺ4.63' ࣗಈςετͷ࠷దόϥϯεΛٻΊͯ 5BLVUP8"%" 0DU !όϧςεڞ࠵ηϛφʔ !U@XBEB !UXBEB 📷🙆 🙆 !UXBEB
JEUXBEB
ͳͥࣗಈςετΛ ॻ͘ͷͩΖ͏͔
IUUQTXXX fl JDLSDPNQIPUPTNEHSPVQ ࣗಈςετΛॻ͘ओతࢦඪΛʮίετݮʯʹ͢Δͱɺظతʹࣗಈς ετͷֶशίετɺதظతʹอकίετʹΑͬͯࢥͬͨΑ͏ͳίετݮޮ Ռ͕ಘΒΕͣɺखಈςετʹΔͱ͍͏அΛͯ͠͠·͍͕ͪͰ͢ ࣗಈςετҎ֎ͷٕज़ࢪࡦͰίετݮΛओతʹ͢Δͱࣦഊ͕ͪ͠Ͱ͢ ΞϯνύλʔϯίετݮΛओతʹ͢Δ
IUUQTXXXPSFJMMZDPKQCPPLT ʰ(PPHMFͷιϑτΣΞΤϯδχΞϦϯάʱQ ࣗಈςετͷಈػৗʹมԽΛՄೳʹ͢ΔͨΊ
IUUQTUXJUUFSDPNUPLPSPUFOTUBUVT มߋ༰қੑͷߴ͍ιϑτΣΞʹΑΔΞδϦςΟͷ֫ಘ
ͯ͢ΛΞδϟΠϧͳܗͰػೳͤ͞Δʹɺ༏Εͨઃܭʹ͚ͨϓϥΫςΟεΛ ࣮ફ͢Δඞཁ͕͋Γ·͢ɻͱ͍͏ͷɺ༏ΕͨઃܭʹΑͬͯมߋ͕༰қʹͳΔͨ ΊͰ͢ɻͦͯ͠มߋ͕༰қͰ͋Δ߹ɺ͋ΒΏΔϨϕϧͰ᪳ͳ͘ௐ͕Մೳʹ ͳΔͷͰ͢ɻ ͦΕ͕ͦ͜ΞδϦςΟʔͱ͍͏ͷͳͷͰ͢ɻ ʰୡਓϓϩάϥϚʔୈ൛ʱQ ΞδϦςΟͷຊ࣭͋ΒΏΔϨϕϧͰ᪳ͳ͘มԽ͢Δ
ͳͥࣗಈςετΛॻ͘ͷ͔ 🙅 ίετΛݮ͢ΔͨΊ 🙆 ૉૣ᪳͘ͳ͘มԽ͠ଓ͚ΔྗΛಘΔͨΊ
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
ςετࣗಈԽͱاۀͷۀͷҼՌؔ IUUQTXXXBNB[PODPKQEQ ςετͷࣗಈԽʹ͓͍ͯɺ*5ύϑΥʔϚϯεͷ ༧ଌईͱͳΓ͏Δ͜ͱ͕໌ͨ͠ͷ࣍ͷͭ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ ։ൃऀओମͰड͚ೖΕςετΛ࡞ɾཧ͠ɺ खݩͷ։ൃڥͰ؆୯ʹ࠶ݱɾमਖ਼Ͱ͖Δ͜ͱ ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
IUUQTXXXBNB[PODPKQEQ ςετʹ߹֨ͨ͠ιϑτΣΞͰ͋ΕϦϦʔεՄೳɺෆ߹֨Ͱ͋Εॏେͳ ෆ۩߹͕͋ΔɺͱνʔϜ͕֬৴Ͱ͖ΔΑ͏ͳςετΛ࣮ࢪ͍ͯ͠Δ͜ͱ ޡݕʢِཅੑGBMTFQPTJUJWFʣݟಀ͠ʢِӄੑGBMTFOFHBUJWFʣ͕ଟ ͘ɺ৴པੑʹ͚ܽΔςετεΠʔτ͕͋·Γʹଟ͗͢Δ ৴པͷߴ͍ςετεΠʔτΛ࡞Γ্͛Δܧଓతͳྗͱ ࢿՁ͕͋Δ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ
ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
ޭͱࣦഊɺِཅੑͱِӄੑ IUUQTHJIZPKQEFWTFSJBMTBWBOOBMFUUFS Օॴͷಛఆͱम෮ σϓϩΠɺϚʔδ σϓϩΠɺϚʔδ Օॴͷಛఆͱम෮
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ࣗಈςετͷత
Ϣχοτ ΠϯςάϨʔγϣϯ && ίετ ࣮ੑ ςετέʔε ߴ
ߴ ܾఆੑ ςετϐϥϛου
ςετϐϥϛουͱΞΠεΫϦʔϜίʔϯΞϯνύλʔϯ IUUQTXBUJSNFMPOCMPHJOUSPEVDJOHUIFTPGUXBSFUFTUJOHJDFDSFBNDPOF
ςετࣗಈԽͱاۀͷۀͷҼՌؔ IUUQTXXXBNB[PODPKQEQ ςετͷࣗಈԽʹ͓͍ͯɺ*5ύϑΥʔϚϯεͷ ༧ଌईͱͳΓ͏Δ͜ͱ͕໌ͨ͠ͷ࣍ͷͭ ৴པੑͷߴ͍ࣗಈςετΛඋ͑Δ͜ͱ ։ൃऀओମͰड͚ೖΕςετΛ࡞ɾཧ͠ɺ खݩͷ։ൃڥͰ؆୯ʹ࠶ݱɾमਖ਼Ͱ͖Δ͜ͱ ʰ-FBOͱ%FW0QTͷՊֶʱQʢ˞༁ΛҰ෦มߋʣ
IUUQTXXXPSFJMMZDPKQCPPLT ʰγεςϜӡ༻ΞϯνύλʔϯʱQ ͳͥΞΠεΫϦʔϜίʔϯʹͳͬͯ͠·͏ͷ͔ߏత
IUUQTXXXUIPVHIUXPSLTDPNSBEBSUFDIOJRVFTCSPBEJOUFHSBUJPOUFTUT &&ςετͷաࢿ5FDIOPMPHZ3BEBSͰʮ)0-%ʯʹϨʔςΟϯά͞Εͨ
IUUQTXXXUIPVHIUXPSLTDPNSBEBSUFDIOJRVFTCSPBEJOUFHSBUJPOUFTUT ςετࣗಈԽͷྗশࢍʹ͢Δ͕ɺࢲ͕ͨͪޮՌతͰͳ͍ͱߟ͑Δൣͳ౷߹ςετ ʢ˞&&ςετʣʹաࢿ͍ͯ͠Δ৫Λଟ͘ݟ͔͚Δɻ ͜ͷΑ͏ͳςετɺඞཁͳΠϯϑϥɺσʔλɺαʔϏεΛͯ͢උ͑ͨϑϧػೳͷςετ ڥΛඞཁͱ͢ΔͨΊɺ໌Β͔ʹίετ͕͔͔Δɻ ͜ΕΒͯ͢ͷґଘؔͷదͳόʔδϣϯΛཧ͢Δʹɺ͔ͳΓͷௐΦʔόʔϔου͕ ඞཁͱͳΓɺϦϦʔεαΠΫϧ͕͘ͳΓ͕ͪͰ͋Δɻ ࠷ޙʹɺςετͦͷͷ͕੬͘ʹཱͨͳ͍͜ͱଟ͍ɻྫ͑ɺςετ͕ࣦഊͨ͠ͷ͕৽͠ ͍ίʔυͷ͍ͤͳͷ͔ɺόʔδϣϯͷෆҰகʹΑΔґଘؔͷ͍ͤͳͷ͔ɺڥͷ͍ͤͳͷ͔ Λஅ͢Δʹ࿑ྗ͕͔͔ΓɺΤϥʔϝοηʔδ͕ΤϥʔͷݪҼΛಥ͖ࢭΊΔॿ͚ʹͳΔ͜ͱ
΄ͱΜͲͳ͍ɻ ͜ΕΒͷ൷ɺࣗಈԽ͞ΕͨʮϒϥοΫϘοΫεʯ౷߹ςετΛҰൠతʹࢹ͍ͯ͠Δ͜ ͱΛҙຯ͢ΔͷͰͳ͍͕ɺΑΓ༗༻ͳΞϓϩʔνɺࣗ৴ͱϦϦʔεසͷόϥϯεΛͱ ΔͷͰ͋Δͱߟ͑Δɻ &&ςετͷաࢿ5FDIOPMPHZ3BEBSͰʮ)0-%ʯʹϨʔςΟϯά͞Εͨ
4.63'େ͖Ίͷࣗಈςετ܈ͷઃܭ࣌ʹߟྀ͖͢τϨʔυΦϑ IUUQTUFTUJOHHPPHMFCMPHDPNTNVSGCFZPOEUFTUQZSBNJEIUNM S: 動作スピード M: 保守性 U: リソース使用率 R: 信頼性(決定性、安定性)
F: 忠実性(本番環境との類似度) 中心から離れるほど高スコア
৴པੑͷߴ͍࣮ߦ݁Ռʹ ͍࣌ؒͰ౸ୡ͢Δঢ়ଶΛอͭ͜ͱͰɺ ։ൃऀʹࠜڌ͋Δࣗ৴Λ༩͑ɺ ιϑτΣΞͷΛ࣋ଓՄೳʹ͢Δ͜ͱ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠