Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CA x atmaCup 2nd, 5th Place Solution
Search
Shotaro Ishihara
December 08, 2020
Technology
2
930
CA x atmaCup 2nd, 5th Place Solution
「#7 CA x atmaCup 2nd 振り返り回」での発表資料
https://atma.connpass.com/event/198237/
Shotaro Ishihara
December 08, 2020
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
180
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
36
JOAI2025講評 / joai2025-review
upura
0
420
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
150
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
43
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
70
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
76
Web からのデータ収集と探究事例の紹介 / no94_jsai_seminar
upura
0
350
Other Decks in Technology
See All in Technology
バッチ処理で悩むバックエンドエンジニアに捧げるAWS Glue入門
diggymo
3
180
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
1
380
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
200
職種の壁を溶かして開発サイクルを高速に回す~情報透明性と職種越境から考えるAIフレンドリーな職種間連携~
daitasu
0
140
人工衛星のファームウェアをRustで書く理由
koba789
11
6.8k
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
5
710
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.5k
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
110
AWSで始める実践Dagster入門
kitagawaz
1
570
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
470
AWSで推進するデータマネジメント
kawanago
1
1.3k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
4k
4 Signs Your Business is Dying
shpigford
184
22k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
How GitHub (no longer) Works
holman
315
140k
Context Engineering - Making Every Token Count
addyosmani
1
23
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Practical Orchestrator
shlominoach
190
11k
Into the Great Unknown - MozCon
thekraken
40
2k
It's Worth the Effort
3n
187
28k
Transcript
CA × atmaCup 2nd 振り返り会 5th Place Solution ~チームマージ後の戦略を 中⼼に~
チーム: pao++ (u++ & pao) 2020年12⽉10⽇ 1
チーム紹介 public 4位 -> private 5位 u++: https://twitter.com/upura0 pao: https://twitter.com/pppaaaooo
2
最終的なベスト お互いの予測値の重み付き平均 u++: StratifiedKFoldで学習したLightGBM (public lb: 0.3015, 7位相当) pao: Timesplitで学習したLightGBM
(public lb: 0.2859, 13位相当) u++が使っている未来系特徴は最終⽇に近づくほど⽋損が増 える/paoさんのモデルの⽅が最終⽇に近づくほど性能が⾼い ので、最終⽇に近づくほどpaoさんの重みを上げている (public: 0.3072 -> 0.3089, 4位相当) 3
順位の変遷 4
チームマージ前(u++) 類似コンペのKaggle「TalkingData AdTracking Fraud Detection Challenge」の1位解法を参考にしつつ、1100程度 を作成 StratifiedKFoldで学習したLightGBMが、CV: 0.3736、LB: 0.2427
と過学習気味 (macbook pro RAM 16GB で取り組んでいた) 5
チームマージ前(pao) Timesplitで学習したLightGBM(最後1週間をValidに)で、 CV: 0.2460、LB: 0.2319 特徴量を作成しCVを確認しながら追加し、100程度 「特徴量を追加してもCVが下がってばかりで苦戦している」 -> 順位的には上にいたが過学習に苦しんでいたu++と、 特徴量のアイディアを欲していたpaoさんの利害が⼀致した
6
チームマージ後の戦略 . Slack に private channel を作成 . お互いの取り組みを簡単に共有 .
予想通り⽅向性がある程度異なっていたので、アンサンブル に期待しつつ、多様性を保ちながら互いのモデルを育ててい くことに . バリデーション、特徴量、ハイパーパラメータなどの気付き は積極的に議論 7
サブミット回数 ⽔曜夜のチームマージ時点で残り32サブ(23サブ消化) 最初にサブミット回数について確認 ひとまず1⼈10サブくらいは⾃由に 残りはアンサンブル? ⾦曜朝に2⼈ともLB: 0.264に到達 アンサンブル上げ幅の確認のため平均を提出し、LB: 0.280(相関は0.836) 改めて個々のモデルを伸ばす⽅針に(残り20サブ)
終了までどれくらい時間が使えるか、いつ最後のアンサ ンブルをするかも確認 8
モデルの改善(u++) paoさんのアドバイスに沿って、trainとtestで解離しがちな特徴量 を除いていくことでLBが向上 たとえば「⽇付の day 部分を抽出した特徴はtestの期間が8 ⽇間しかないので危険かも」など 1⼈で取り組んでいると気付きづらい点を指摘してもらった 具体的には特徴量を10個ほど削除することで、⼀気にLB: 0.2643
-> 0.2996 (チームマージで決意を固め、GCP RAM 128GB に課⾦) 9
モデルの改善(pao) u++側で効いていた特徴量のアイディアを活⽤ ユーザ単位で次の imp_at との差分など、未来特徴量 詳細はDiscussion参照(参加者のみ) https://www.guruguru.science/competitions/12/discussions/81f b3840-8902-4def-905f-a9a246f9aa39/ 10
未来特徴量の⼯夫 trainとtestでは期間が異なるので、同じように作るとtrainと testで解離が発⽣ trainの最初の⽅では、次の imp_at が14⽇後というデ ータが存在するが、testは8⽇間しかない testの最終⽇は、最⼤でも24時間後のデータ ⼀定の期間以上のデータを null
に置換すると解離が防 げる⼀⽅で、情報量が落ちる testの⽇付分の8モデルを作成(LB: 0.2705 -> 0.2869) 初⽇モデル: 8⽇後以降は null 、2⽇⽬モデル: 7⽇後以 降は null 、、、最終⽇モデル: 24時間以降は null 11
⽇付別モデルの⽐較 12
Date Weight Ensemble paoさんモデルの⽅がtest後半に強くなると想定した重み付き平均 (LB: 0.3072 -> 0.3089) pao_weight =
{ '2020-06-27': 0.1, '2020-06-28': 0.18, '2020-06-29': 0.26, '2020-06-30': 0.33999999999999997, '2020-07-01': 0.42000000000000004, '2020-07-02': 0.5, '2020-07-03': 0.58, '2020-07-04': 0.66 } ※ 重みは適当だが、late subしても超えられず 13
まとめ CA × atmaCup 2nd の 5位解法の紹介 paoさんとのチームマージ後の戦略を中⼼に 14