Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Classical nucleation theory

Vinay Vaibhav
August 29, 2020

Classical nucleation theory

Presented the above discussion in our research group at IMSc. More details here: https://docs.google.com/document/d/1X8s60OS8PIXhtca8rvz38_o3rUljgJRT8GQBvhicebw/edit?usp=sharing

Vinay Vaibhav

August 29, 2020
Tweet

More Decks by Vinay Vaibhav

Other Decks in Science

Transcript

  1. Vinay Vaibhav The Institute of Mathematical Sciences Student Discussion Group

    on Glasses August 29, 2020 CLASSICAL NUCLEATION THEORY
  2. Resources Metastable Liquids: Concepts and Principles Pablo G. Debenedetti Lecture

    Notes in Physics: Nucleation Theory V. I. Kalikmanov Video Lecture on Classical Nucleation Theory (School on Nucleation aggregation and growth- 2010, ICTS-JNCASR) David Reguera Computational Methods for the study of Nucleation (School on Nucleation aggregation and growth- 2010, ICTS-JNCASR) Charusita Chakravarty
  3. Phase Transitions, Metastability and Nucleation Phase diagram: At any given

    T, P and $mu$ which phase is thermodynamically stable — No information about kinetics of phase transformation https://www.chem.libretexts.org van der Waals equation of state Liquid-gas or gas-liquid phase transition P = kBT v b a v2 <latexit sha1_base64="7sIkpoq+rDfZhE0nst2CNRShRGo=">AAACD3icdVDLTgIxFO34RHyhLt00AsYNZGYgAgsTohuXmPBKYCSd0oGGziNth4RM5g/c+CtuXGiMW7fu/BsLjIkaPclNTs+5N7332AGjQur6h7ayura+sZnaSm/v7O7tZw4O28IPOSYt7DOfd20kCKMeaUkqGekGnCDXZqRjT67mfmdKuKC+15SzgFguGnnUoRhJJQ0yp7kGvIB9hyMcTQaXzTiaFuwYFhIJqfetGecGmaxeLFVq5do5VKRaMcv6kuiVGjSK+gJZkKAxyLz3hz4OXeJJzJAQPUMPpBUhLilmJE73Q0EChCdoRHqKesglwooW98Qwr5QhdHyuypNwoX6fiJArxMxVe+ZdJMfitzcX//J6oXSqVkS9IJTEw8uPnJBB6cN5OHBIOcGSzRRBmFO1K8RjpIKQKsK0CuHrUvg/aZtFo1Q0bsxsvZzEkQLH4AScAQNUQB1cgwZoAQzuwAN4As/avfaovWivy9YVLZk5Aj+gvX0CVnGbmA==</latexit> One component system
  4. Phase Transitions, Metastability and Nucleation P V T C Nucleation:

    Potential barrier Spinodal decomposition: No potential barrier Unstable Metastable Binodal line Spinodal line
  5. Phase Transitions, Metastability and Nucleation Nucleation: An activated process; transforming

    a metastable phase to a thermodynamically stable phase; formation of the first embryos of new phase — Most first-order phase transitions occur via nucleation Homogeneous nucleation: In the absence of impurity, surface etc.; achieved thermally; ideal case Heterogeneous nucleation: Impurity, surface, grain boundary etc. provide the place for nucleation site; more practical Goal of Nucleation theory: Rate at which embryos grow to a critical size
  6. Example: Condensation of Supersaturated Vapor Surface term Volume term Surface

    + Volume n G <latexit sha1_base64="vEMFqaRr2AYZUz70ezEOQAsvWxQ=">AAAB8XicdVDJSgNBEO2JW4xb1KOXxkTwFGaioMeggh4jmAWTIfR0KkmTnp6hu0YIQ/7CiwdFvPo33vwbO4vg+qDpx3tVVNULYikMuu67k1lYXFpeya7m1tY3Nrfy2zt1EyWaQ41HMtLNgBmQQkENBUpoxhpYGEhoBMPzid+4A21EpG5wFIMfsr4SPcEZWum22L4AiYxeFjv5gls6diegv4lXmv5ugcxR7eTf2t2IJyEo5JIZ0/LcGP2UaRRcwjjXTgzEjA9ZH1qWKhaC8dPpxmN6YJUu7UXaPoV0qn7tSFlozCgMbGXIcGB+ehPxL6+VYO/UT4WKEwTFZ4N6iaQY0cn5tCs0cJQjSxjXwu5K+YBpxtGGlLMhfF5K/yf1csk7KnnX5ULlbB5HluyRfXJIPHJCKuSKVEmNcKLIPXkkT45xHpxn52VWmnHmPbvkG5zXDxgfj+A=</latexit> Nucleation: Thermal fluctuations allows the generation of small aggregates of liquid phase Small clusters are energetically unfavourable; dissolve back to individual molecules Clusters greater than a critical size are thermodynamically favourable and tend to grow to form a new phase Nucleation kinetics: Rate at which critically sized clusters are formed? G(n) = n µ + A(n) <latexit sha1_base64="8C0uILpbKBjN+oS1sEJHXThy2IY=">AAACFHicdZDLSgMxFIYz9VbrbdSlm2ArVIplpgq6EeoFdFnBXqBTSiZN29AkMyQZoQx9CDe+ihsXirh14c63MW1H8Hog5Of7zyE5vx8yqrTjvFupmdm5+YX0YmZpeWV1zV7fqKkgkphUccAC2fCRIowKUtVUM9IIJUHcZ6TuD87Gfv2GSEUDca2HIWlx1BO0SzHSBrXtQs47J0wjeJEXu/AY7kEBE+LxCBbgieGeoj2Ocm076xQPnHHB38ItTm4nC5KqtO03rxPgiBOhMUNKNV0n1K0YSU0xI6OMFykSIjxAPdI0UiBOVCueLDWCO4Z0YDeQ5ggNJ/TrRIy4UkPum06OdF/99MbwL68Z6e5RK6YijDQRePpQN2JQB3CcEOxQSbBmQyMQltT8FeI+kghrk2PGhPC5Kfxf1EpFd7/oXpWy5dMkjjTYAtsgD1xwCMrgElRAFWBwC+7BI3iy7qwH69l6mbamrGRmE3wr6/UD0Kia7g==</latexit>
  7. Nucleation Kinetics Growth of clusters is modelled as a series

    of chemical reactions Assumptions: Clusters grow/decay because of attachment/detachment of individual molecule under isothermal condition; a monomer colliding with a cluster stick to it with unit probability; Markov process i.e., no memory + — Cluster of size n Cluster of size n+1 Cluster of size n+1 Cluster of size n f(n+1,t) f(n,t) ↵(n + 1, t) <latexit sha1_base64="41FlwtIUTX1QtO1S74VaOGVZtaQ=">AAAB+HicdVDLSsNAFJ3UV62PRl26GWyFihKS2FrdFd24rGAf0IYymU7s0MkkzEyEGvolblwo4tZPceffOH2ID/TAhcM593LvPX7MqFS2/W5kFhaXlleyq7m19Y3NvLm13ZRRIjBp4IhFou0jSRjlpKGoYqQdC4JCn5GWP7yY+K1bIiSN+LUaxcQL0Q2nAcVIaaln5otdxOIBKvFD50gdFHtmwbbKlfKZ7UJNTtxqufJFHMueogDmqPfMt24/wklIuMIMSdlx7Fh5KRKKYkbGuW4iSYzwEN2QjqYchUR66fTwMdzXSh8GkdDFFZyq3ydSFEo5Cn3dGSI1kL+9ifiX10lUcOqllMeJIhzPFgUJgyqCkxRgnwqCFRtpgrCg+laIB0ggrHRWOR3C56fwf9J0LefYcq7cQu18HkcW7II9UAIOqIIauAR10AAYJOAePIIn4854MJ6Nl1lrxpjP7IAfMF4/AOydkfc=</latexit> f(n,t) f(n+1,t) (n, t) <latexit sha1_base64="7aZFDwdkmuVcPpLY3SV3CSdxn+k=">AAAB83icdVDJSgNBEO2JW4xb1KOXxkSIIGFmTIzegl48RjALZELo6fQkTXp6hu4aIYT8hhcPinj1Z7z5N3YWcUEfFDzeq6Kqnh8LrsG2363U0vLK6lp6PbOxubW9k93da+goUZTVaSQi1fKJZoJLVgcOgrVixUjoC9b0h1dTv3nHlOaRvIVRzDoh6UsecErASF7e8xmQgjyB43w3m7OLpXLpwnaxIWdupVT+Ik7RniGHFqh1s29eL6JJyCRQQbRuO3YMnTFRwKlgk4yXaBYTOiR91jZUkpDpznh28wQfGaWHg0iZkoBn6veJMQm1HoW+6QwJDPRvbyr+5bUTCM47Yy7jBJik80VBIjBEeBoA7nHFKIiRIYQqbm7FdEAUoWBiypgQPj/F/5OGW3ROi86Nm6teLuJIowN0iArIQRVURdeohuqIohjdo0f0ZCXWg/VsvcxbU9ZiZh/9gPX6Ac1DkOI=</latexit> : Concentration of clusters containing n molecules at time t : Rate of attachment of single molecule to a cluster of size n at time t (condensation) : Rate of detachment of single molecule from a cluster of size n at time t (evaporation) (n, t) <latexit sha1_base64="7aZFDwdkmuVcPpLY3SV3CSdxn+k=">AAAB83icdVDJSgNBEO2JW4xb1KOXxkSIIGFmTIzegl48RjALZELo6fQkTXp6hu4aIYT8hhcPinj1Z7z5N3YWcUEfFDzeq6Kqnh8LrsG2363U0vLK6lp6PbOxubW9k93da+goUZTVaSQi1fKJZoJLVgcOgrVixUjoC9b0h1dTv3nHlOaRvIVRzDoh6UsecErASF7e8xmQgjyB43w3m7OLpXLpwnaxIWdupVT+Ik7RniGHFqh1s29eL6JJyCRQQbRuO3YMnTFRwKlgk4yXaBYTOiR91jZUkpDpznh28wQfGaWHg0iZkoBn6veJMQm1HoW+6QwJDPRvbyr+5bUTCM47Yy7jBJik80VBIjBEeBoA7nHFKIiRIYQqbm7FdEAUoWBiypgQPj/F/5OGW3ROi86Nm6teLuJIowN0iArIQRVURdeohuqIohjdo0f0ZCXWg/VsvcxbU9ZiZh/9gPX6Ac1DkOI=</latexit> ↵(n, t) <latexit sha1_base64="Y5eAgPG9S5mT4YmqsUlCdjMFOSo=">AAAB9HicdVDJSgNBEO2JW4xb1KOXxkSIIGFmTIzegl48RjALJEOo6XSSJj09Y3dPIIR8hxcPinj1Y7z5N3YWcUEfFDzeq6Kqnh9xprRtv1uJpeWV1bXkempjc2t7J727V1NhLAmtkpCHsuGDopwJWtVMc9qIJIXA57TuD66mfn1IpWKhuNWjiHoB9ATrMgLaSF62BTzqQ06c6ONsO52x84Vi4cJ2sSFnbqlQ/CJO3p4hgxaotNNvrU5I4oAKTTgo1XTsSHtjkJoRTiepVqxoBGQAPdo0VEBAlTeeHT3BR0bp4G4oTQmNZ+r3iTEESo0C33QGoPvqtzcV//Kase6ee2MmolhTQeaLujHHOsTTBHCHSUo0HxkCRDJzKyZ9kEC0ySllQvj8FP9Pam7eOc07N26mfLmII4kO0CHKIQeVUBldowqqIoLu0D16RE/W0Hqwnq2XeWvCWszsox+wXj8Al5yRVg==</latexit> f(n, t) <latexit sha1_base64="s3HQ9Y3q4srMtiOSFYRDm2hVhVw=">AAAB73icdVDJSgNBEO2JW4xb1KOXxihEkDAzJkZvQS8eI5gFkiH0dHqSJj09Y3eNEEJ+wosHRbz6O978GzuLuKAPCh7vVVFVz48F12Db71ZqYXFpeSW9mllb39jcym7v1HWUKMpqNBKRavpEM8ElqwEHwZqxYiT0BWv4g8uJ37hjSvNI3sAwZl5IepIHnBIwUvMgyMtjODroZHN2oVgqntsuNuTULRdLX8Qp2FPk0BzVTvat3Y1oEjIJVBCtW44dgzciCjgVbJxpJ5rFhA5Ij7UMlSRk2htN7x3jQ6N0cRApUxLwVP0+MSKh1sPQN50hgb7+7U3Ev7xWAsGZN+IyToBJOlsUJAJDhCfP4y5XjIIYGkKo4uZWTPtEEQomoowJ4fNT/D+puwXnpOBcu7nKxTyONNpD+yiPHFRGFXSFqqiGKBLoHj2iJ+vWerCerZdZa8qaz+yiH7BePwDKKo8o</latexit>
  8. Nucleation Kinetics Master equation for the evolution of cluster: @f(n,t)

    @t <latexit sha1_base64="WebWTz5iq+ec9RQBPB9MGzNn/0w=">AAACDnicdVBLSwMxGMzWV62vqkcvwbZQQcpuW2x7K3jxWMG2Qncp2TTbhmazS5IVyrK/wIt/xYsHRbx69ua/MdtWfKADgWHm+5LMuCGjUpnmu5FZWV1b38hu5ra2d3b38vsHPRlEApMuDlggrl0kCaOcdBVVjFyHgiDfZaTvTs9Tv39DhKQBv1KzkDg+GnPqUYyUlob5UtH2BMKxHSKhKGLQK/NTdZJ8CSqBxWG+YFZqjVa9dQY1aTaqdXNBzEYLWhVzjgJYojPMv9mjAEc+4QozJOXAMkPlxOmVmJEkZ0eShAhP0ZgMNOXIJ9KJ53ESWNLKCHqB0IcrOFe/b8TIl3Lmu3rSR2oif3up+Jc3iJTXdGLKw0gRjhcPeZGOGMC0GziigmDFZpogLKj+K8QTpOtRusGcLuEzKfyf9KoVq1axLquFdn1ZRxYcgWNQBhZogDa4AB3QBRjcgnvwCJ6MO+PBeDZeFqMZY7lzCH7AeP0AnDObyw==</latexit> = (n 1, t)f(n 1, t) ↵(n, t)f(n, t) (n, t)f(n, t) + ↵(n + 1, t)f(n + 1, t) <latexit sha1_base64="zNKZb0023snVroBfeb+ft7b9T4w=">AAACQnicdZBPSwJBGMZn7Z/ZP6tjlyELinLZVUk9BEGXjgVZhorMjrM5NDu7zLwbiPjZuvQJuvUBunQoomuHRl3Bol4Y5uH3PC+z+3iR4Boc59lKzczOzS+kFzNLyyura9n1jSsdxoqyGg1FqOoe0UxwyWrAQbB6pBgJPMGuvbvToX99z5TmobyEXsRaAbmV3OeUgEHt7M3OMW56DMiezLuHsI/9icjjJhFR1xgJTuA4PMUOJrmD4Z6f3DvtbM6xi+VqqXqEjaiUCyVnLJxyFbu2M5ocSua8nX1qdkIaB0wCFUTrhutE0OoTBZwKNsg0Y80iQu/ILWsYKUnAdKs/qmCAdw3pYD9U5kjAIzq90SeB1r3AM8mAQFf/9obwL68Rg19p9bmMYmCSjh/yY4EhxMM+cYcrRkH0jCBUcfOtmHaJIhRM6xlTwuRP8f/iqmC7Rdu9KOROSkkdabSFttEeclEZnaAzdI5qiKIH9ILe0Lv1aL1aH9bnOJqykp1N9GOsr28E1ala</latexit> Cluster of size n-1 Cluster of size n Cluster of size n+1 (n 1, t) <latexit sha1_base64="QBkknsyMlV9VUOoDphvNS+rwNsU=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBhMhgobdJJjkFvDiMYJ5QBLD7GQ2GTI7u8z0KmHJf3jxoIhX/8Wbf+PkIahoQUNR1U13lxsKrsG2P6zEyura+kZyM7W1vbO7l94/aOogUpQ1aCAC1XaJZoJL1gAOgrVDxYjvCtZyx5czv3XHlOaBvIFJyHo+GUrucUrASLfZrsuA5OS5cwan2X46Y+eL5WqpeoENqZQLJXtB7HIVO3l7jgxaot5Pv3cHAY18JoEKonXHsUPoxUQBp4JNU91Is5DQMRmyjqGS+Ez34vnVU3xilAH2AmVKAp6r3ydi4ms98V3T6RMY6d/eTPzL60TgVXoxl2EETNLFIi8SGAI8iwAPuGIUxMQQQhU3t2I6IopQMEGlTAhfn+L/SbOQd4p557qQqZWWcSTRETpGOeSgMqqhK1RHDUSRQg/oCT1b99aj9WK9LloT1nLmEP2A9fYJv/uRVg==</latexit> (n, t) <latexit sha1_base64="RMbDXH/5JUQZiqd0W+ZAiQoC1kU=">AAAB83icdVDLSgNBEJz1GeMr6tHLYCJEkLCbBDe5Bbx4jGAekF3C7GSSDJmdXWZ6hbDkN7x4UMSrP+PNv3HyEFS0oKGo6qa7K4gF12DbH9ba+sbm1nZmJ7u7t39wmDs6busoUZS1aCQi1Q2IZoJL1gIOgnVjxUgYCNYJJtdzv3PPlOaRvINpzPyQjCQfckrASF7BCxiQoryEi0I/l7dLFbderV9hQ2puuWovie3WsVOyF8ijFZr93Ls3iGgSMglUEK17jh2DnxIFnAo2y3qJZjGhEzJiPUMlCZn208XNM3xulAEeRsqUBLxQv0+kJNR6GgamMyQw1r+9ufiX10tgWPNTLuMEmKTLRcNEYIjwPAA84IpREFNDCFXc3IrpmChCwcSUNSF8fYr/J+1yyamUnNtyvlFdxZFBp+gMFZGDXNRAN6iJWoiiGD2gJ/RsJdaj9WK9LlvXrNXMCfoB6+0T4HWQ5A==</latexit> ↵(n, t) <latexit sha1_base64="5I50XrAJtCrYtXpf+zVb4ciLSSE=">AAAB9HicdVBdSwJBFJ21L7Mvq8dehjQwiGVXJfVN6KVHgzRBF5kdZ3VwdnabuSuI+Dt66aGIXvsxvfVvGj+Cijpw4XDOvdx7jx8LrsFxPqzU2vrG5lZ6O7Ozu7d/kD08aukoUZQ1aSQi1faJZoJL1gQOgrVjxUjoC3bnj67m/t2YKc0jeQuTmHkhGUgecErASF6+S0Q8JAV5Aef5Xjbn2KVKrVy7xIZUK8WysyROpYZd21kgh1Zo9LLv3X5Ek5BJoIJo3XGdGLwpUcCpYLNMN9EsJnREBqxjqCQh0950cfQMnxmlj4NImZKAF+r3iSkJtZ6EvukMCQz1b28u/uV1Egiq3pTLOAEm6XJRkAgMEZ4ngPtcMQpiYgihiptbMR0SRSiYnDImhK9P8f+kVbTdku3eFHP18iqONDpBp6iAXFRBdXSNGqiJKLpHD+gJPVtj69F6sV6XrSlrNXOMfsB6+wSqzpFY</latexit> ↵(n + 1, t) <latexit sha1_base64="PjefM40YjAuws8d/toeJGE3SC0A=">AAAB+XicdVDLSgNBEJz1GeNr1aOXwUSIKGE3CW5yC3jxGME8IAlhdjJJhszOLjO9gbDkT7x4UMSrf+LNv3HyEFS0oKGo6qa7y48E1+A4H9ba+sbm1nZqJ727t39waB8dN3QYK8rqNBShavlEM8ElqwMHwVqRYiTwBWv645u535wwpXko72EasW5AhpIPOCVgpJ5tZztERCOSk/jSvYKLbM/OOPmiVylVrrEhZa9QcpbE8SrYzTsLZNAKtZ793umHNA6YBCqI1m3XiaCbEAWcCjZLd2LNIkLHZMjahkoSMN1NFpfP8LlR+ngQKlMS8EL9PpGQQOtp4JvOgMBI//bm4l9eO4ZBuZtwGcXAJF0uGsQCQ4jnMeA+V4yCmBpCqOLmVkxHRBEKJqy0CeHrU/w/aRTybjHv3hUy1dIqjhQ6RWcoh1zkoSq6RTVURxRN0AN6Qs9WYj1aL9brsnXNWs2coB+w3j4BWVmSIw==</latexit> Rate at which n-clusters become (n+1)-clusters (Nucleation rate) per unit volume: J(n, t) = (n, t)f(n, t) ↵(n + 1, t)f(n + 1, t) <latexit sha1_base64="Zy2Hm1N4puz9BxBrIZ2uHCBJurk=">AAACH3icdVDLSgMxFM3Ud31VXboJtkJFLTNtae1CENyIqwr2AW0pmTTThmYyQ3JHKMU/ceOvuHGhiLjr35h2KqjogZCTc+7l5h43FFyDbU+sxMLi0vLK6lpyfWNzazu1s1vXQaQoq9FABKrpEs0El6wGHARrhooR3xWs4Q4vp37jjinNA3kLo5B1fNKX3OOUgJG6qVLmOitP4Aif47bLgMQPL75OcZuIcGBEfOzM9RnJdFNpO1coV4qVEjbkrJwv2jGxyxXs5OwZ0miOajf10e4FNPKZBCqI1i3HDqEzJgo4Few+2Y40Cwkdkj5rGSqJz3RnPNvvHh8apYe9QJkjAc/U7x1j4ms98l1T6RMY6N/eVPzLa0XgnXXGXIYRMEnjQV4kMAR4GhbuccUoiJEhhCpu/orpgChCwUSaNCF8bYr/J/V8zinknJt8+qI4j2MV7aMDlEUOKqMLdIWqqIYoekBP6AW9Wo/Ws/VmvcelCWves4d+wJp8AodIna8=</latexit> @f(n,t) @t = J(n 1, t) J(n, t) <latexit sha1_base64="4kNID3aElpyNOhcLjC6HVKlgXyI=">AAACInicdZDLSgMxFIYz9VbrrerSTbAVKtgy0xanXQgFN+Kqgr1AW0omzbShmcyQZIQy9Fnc+CpuXCjqSvBhzLQVL+gPgY//nMPJ+Z2AUalM881ILC2vrK4l11Mbm1vbO+ndvab0Q4FJA/vMF20HScIoJw1FFSPtQBDkOYy0nPF5XG/dECGpz6/VJCA9Dw05dSlGSlv9dDXbdQXCUTdAQlHEoJvjJ+p4+mWoKTyDlzmet7QP8zHGkO2nM2ahZFfL1VOooWIXy+YcTLsKrYI5UwYsVO+nX7oDH4ce4QozJGXHMgPVi+I1mJFpqhtKEiA8RkPS0ciRR2Qvmp04hUfaGUDXF/pxBWfu94kIeVJOPEd3ekiN5O9abP5V64TKrfQiyoNQEY7ni9xQn+3DOC84oIJgxSYaEBZU/xXiEdKRKZ1qSofweSn8H5rFglUqWFfFTK28iCMJDsAhyAEL2KAGLkAdNAAGt+AePIIn4854MJ6N13lrwljM7IMfMt4/ALnzoS0=</latexit> Steady state nucleation rate: Does not depend on time and size of the cluster Steady state: J(n,t) = J
  9. Nucleation Kinetics: Kinetic Theory Condensation rate can be evaluated using

    kinetic theory: (n) = ⌫A(n) <latexit sha1_base64="1xtYQz/5dr1o2esvbzj3aTVGxoA=">AAACAHicdZDLSsNAFIYn9VbrLerChZvBVqibkLTFtAuh4sZlBXuBppTJdNIOnUzCzEQopRtfxY0LRdz6GO58GydtBRX9YeDjP+dw5vx+zKhUtv1hZFZW19Y3spu5re2d3T1z/6Alo0Rg0sQRi0THR5IwyklTUcVIJxYEhT4jbX98ldbbd0RIGvFbNYlJL0RDTgOKkdJW3zwqeD5RqMjP4AX0eAIvU4SFvpm3rbJbq9TOoYaqW6rYC7DdGnQse648WKrRN9+9QYSTkHCFGZKy69ix6k2RUBQzMst5iSQxwmM0JF2NHIVE9qbzA2bwVDsDGERCP67g3P0+MUWhlJPQ150hUiP5u5aaf9W6iQqqvSnlcaIIx4tFQcKgimCaBhxQQbBiEw0IC6r/CvEICYSVziynQ/i6FP4PrZLllC3nppSvV5ZxZMExOAFF4AAX1ME1aIAmwGAGHsATeDbujUfjxXhdtGaM5cwh+CHj7RPpopP/</latexit> $\nu$ (impingement rate) is the number of gas molecules hitting the unit area in unit time and A(n) is the surface area of a cluster containing n molecules Cluster of size n 4/3⇡R3 = n4/3⇡r3 <latexit sha1_base64="lCqgg9v3vQ7diTH18XzL+1BouWM=">AAACB3icdVDLSgMxFM3UV62vUZeCBFvBVZ3pDE67EApuXFaxD2hryaRpG5rJDElGKEN3bvwVNy4UcesvuPNvTF+gogcC555zLzf3+BGjUlnWp5FaWl5ZXUuvZzY2t7Z3zN29mgxjgUkVhywUDR9JwignVUUVI41IEBT4jNT94cXEr98RIWnIb9QoIu0A9TntUYyUljrmYc49dWArovD61oHnkMNFLXSd65hZK+94Jbd0BjUpegXXmhHLK0E7b02RBXNUOuZHqxviOCBcYYakbNpWpNoJEopiRsaZVixJhPAQ9UlTU44CItvJ9I4xPNZKF/ZCoR9XcKp+n0hQIOUo8HVngNRA/vYm4l9eM1a9YjuhPIoV4Xi2qBczqEI4CQV2qSBYsZEmCAuq/wrxAAmElY4uo0NYXAr/J7VC3nby9lUhW3bncaTBATgCJ8AGHiiDS1ABVYDBPXgEz+DFeDCejFfjbdaaMuYz++AHjPcvERyVmQ==</latexit> R = rn1/3 <latexit sha1_base64="vUI26GIANkU6C2vFdD10DXqs/xI=">AAAB+HicdVDLSsNAFJ3UV62PRl26GWwFVzFpi2kXQsGNyyr2AW0sk+mkHTqZhJmJUEO/xI0LRdz6Ke78G6cPQUUPXDiccy/33uPHjEpl2x9GZmV1bX0ju5nb2t7ZzZt7+y0ZJQKTJo5YJDo+koRRTpqKKkY6sSAo9Blp++OLmd++I0LSiN+oSUy8EA05DShGSkt9M1+8hudQQH6bOqflabFvFmyr7NYqtTOoSdUtVewFsd0adCx7jgJYotE333uDCCch4QozJGXXsWPlpUgoihmZ5nqJJDHCYzQkXU05Con00vnhU3islQEMIqGLKzhXv0+kKJRyEvq6M0RqJH97M/Evr5uooOqllMeJIhwvFgUJgyqCsxTggAqCFZtogrCg+laIR0ggrHRWOR3C16fwf9IqWU7Zcq5KhXplGUcWHIIjcAIc4II6uAQN0AQYJOABPIFn4954NF6M10VrxljOHIAfMN4+AV9PkZQ=</latexit> A(n) = 4⇡R2 = 4⇡r2n2/3 = s1n2/3 <latexit sha1_base64="ygKOqssfF7ZjoIce5gNBCHYEsV0=">AAACHHicdZDLSgMxFIYz9VbrrerSTbAKdVPnUmy7ECpuXFaxF+iNTJq2oZnMkGSEMvRB3Pgqblwo4saF4NuY6QVU9IfAl/+cQ3J+N2BUKtP8NBJLyyura8n11Mbm1vZOenevJv1QYFLFPvNFw0WSMMpJVVHFSCMQBHkuI3V3dBnX63dESOrzWzUOSNtDA077FCOlrW7aObrI8hN4DvOtgMKbjh0jjFlo5p3IPnUm2pNda3E76qYzZs4plPKlM6ihWLDz5gzMQglaOXOqDJir0k2/t3o+Dj3CFWZIyqZlBqodIaEoZmSSaoWSBAiP0IA0NXLkEdmOpstN4LF2erDvC324glP3+0SEPCnHnqs7PaSG8nctNv+qNUPVL7YjyoNQEY5nD/VDBpUP46RgjwqCFRtrQFhQ/VeIh0ggrHSeKR3CYlP4P9TsnOXkrGs7U87P40iCA3AIssACBVAGV6ACqgCDe/AInsGL8WA8Ga/G26w1Ycxn9sEPGR9foJmcxA==</latexit> u Cylinder with unit cross-sectional area and height u ⌫ = R 1 0 u.1.(N/V ). (u)du <latexit sha1_base64="ik87hTxvFX6M/noi7/Cas5IuUT0=">AAACF3icdVBNSysxFM348dTqe1ZdurlYhbqZN1OLtQtBcONKFGwVOrVk0owNZjJDciOU4r9w419x40IRt7rz35h+CO/JewdCDufcQ3JPnEthMAg+vKnpmdkfc/MLhcWln7+WiyurTZNZzXiDZTLTFzE1XArFGyhQ8otcc5rGkp/H14dD//yGayMydYb9nLdTeqVEIhhFJ3WK/makLOxDJBR2gkt3JdgH60PoQ/n4d3PbhyjvibLdhq6FzU6xFPg7tXq1vguO7NUq1WBMglrdZYIRSmSCk07xPepmzKZcIZPUmFYY5NgeUI2CSX5biKzhOWXX9Iq3HFU05aY9GO11C1tO6UKSaXcUwkj9MzGgqTH9NHaTKcWe+e4NxX95LYvJXnsgVG6RKzZ+KLESMINhSdAVmjOUfUco08L9FViPasrQVVlwJXxtCv8nzYof7vjhaaV0UJ3UMU/WyQYpk5DUyAE5IiekQRi5Iw/kiTx7996j9+K9jkenvElmjfwF7+0TUIecOA==</latexit> Maxwell velocity distribution ⌫ = pv p 2⇡m1kBT <latexit sha1_base64="XikqDZ/9brdb1OMlyQa5sikijpY=">AAACEnicdVDLSsNAFJ34rPVVdelmsBV0U5K22HYhFN24rNAXNDVMppN26GQSZyaFEvINbvwVNy4UcevKnX/j9CGo6IELh3Pu5d573JBRqUzzw1haXlldW09tpDe3tnd2M3v7LRlEApMmDlggOi6ShFFOmooqRjqhIMh3GWm7o8up3x4TIWnAG2oSkp6PBpx6FCOlJSdzmrN5BM+h7QmE4/BmnMS2vBUqLtghhb5jwZFzARtJknMyWTNfLFdL1TOoSaVcKJlzYpar0MqbM2TBAnUn8273Axz5hCvMkJRdywxVL0ZCUcxIkrYjSUKER2hAuppy5BPZi2cvJfBYK33oBUIXV3Cmfp+IkS/lxHd1p4/UUP72puJfXjdSXqUXUx5GinA8X+RFDKoATvOBfSoIVmyiCcKC6lshHiIdjtIppnUIX5/C/0mrkLeKeeu6kK2VFnGkwCE4AifAAmVQA1egDpoAgzvwAJ7As3FvPBovxuu8dclYzByAHzDePgEHr50K</latexit> (n) = pv p 2⇡m1kBT s1n2/3 <latexit sha1_base64="jOjcUHAGUu5Nc6FLRldmRaw2I8Y=">AAACI3icdZDLSsNAFIYn3q23qks3g1XQTU3SYq0giG5cKlgVmhom00kdOpnEmROhhLyLG1/FjQtF3LjwXZxeBBX9YeDjP+dw5vxBIrgG2363xsYnJqemZ2YLc/MLi0vF5ZULHaeKsgaNRayuAqKZ4JI1gINgV4liJAoEuwy6x/365R1TmsfyHHoJa0WkI3nIKQFj+cX9DS9gQLbkNj7AXqgIzZLruzzz9K2CzPUSjiPfwV3/CJ/nOdaG5XXm7lTyDb9YssuVWr1a38UG9mpu1R6CXatjp2wPVEIjnfrFV68d0zRiEqggWjcdO4FWRhRwKlhe8FLNEkK7pMOaBiWJmG5lgxtzvGmcNg5jZZ4EPHC/T2Qk0roXBaYzInCjf9f65l+1ZgrhXivjMkmBSTpcFKYCQ4z7geE2V4yC6BkgVHHzV0xviAkKTKwFE8LXpfh/uHDLTqXsnLmlw+oojhm0htbRFnJQDR2iE3SKGoiie/SIntGL9WA9Wa/W27B1zBrNrKIfsj4+AUkQosc=</latexit> Evaporation rate is a priori not known
  10. Nucleation Kinetics: Constrained Equilibrium Constrained equilibrium: Assume there exists an

    equilibrium distribution of droplets in bulk metastable phase — transient period is smaller than the metastable lifetime feq (n) = Constrained equilibrium distribution of cluster of size n Also, J(n) = 0 for all n: J(n, t) = (n, t)f(n, t) (n) feq(n) feq(n+1) f(n + 1, t) <latexit sha1_base64="7/HCYB8lB+JjM551QzoABU1XHW8=">AAACN3icdVDPSxtBFJ611dr4K9pjL4NRMKhhNwaTHAqBXooHsWBUSEKYnbyNg7Oz25m3Qlj2v+ql/0ZvevFgKV79D5xNoqjog2G+973vY+Z9fiyFQde9cmY+fJyd+zT/ubCwuLS8UlxdOzFRojm0eSQjfeYzA1IoaKNACWexBhb6Ek79i+/5/PQStBGROsZRDL2QDZUIBGdoqX7xcONgS+1gmX6jXR+QTZpgfO0+UmXaDTTjadBP4Vdm++wJbnvlLJdve7lvo18suZW9erPW3KcWNOrVmjsBbr1JvYo7rhKZ1lG/+Lc7iHgSgkIumTEdz42xlzKNgkvICt3EQMz4BRtCx0LFQjC9dLx3RjctM6BBpO1RSMfsc0fKQmNGoW+VIcNz83qWk2/NOgkGjV4qVJwgKD55KEgkxYjmIdKB0MBRjixgXAv7V8rPmY0IbdQFG8LjpvR9cFKteHsV72e11KpN45gnX8k62SIeqZMW+UGOSJtw8ptck1vyz/nj3Dj/nbuJdMaZer6QF+XcPwB+vKgh</latexit> ↵(n + 1) = (n) feq(n) feq(n+1) <latexit sha1_base64="LgCJcFVVYIqy4/sljZhM21gBBy8=">AAACH3icdVDLSgMxFM3UV62vqks3wSooQplpi7ULoeDGZQWrQqeUTHqnDc1kxiQjlGH+xI2/4saFIuKuf2P6UFT0QODcc+7l5h4v4kxp2x5Zmbn5hcWl7HJuZXVtfSO/uXWlwlhSaNKQh/LGIwo4E9DUTHO4iSSQwONw7Q3Oxv71HUjFQnGphxG0A9ITzGeUaCN18sd7LuFRnxyII+cQn2LXA22KQ+z6ktDE7yRwm5o6/aKmL93r5At2sVytVWrH2JCTaqliT4ldrWGnaE9QQDM0Ovl3txvSOAChKSdKtRw70u2ESM0ohzTnxgoiQgekBy1DBQlAtZPJfSneN0oX+6E0T2g8Ub9PJCRQahh4pjMguq9+e2PxL68Va/+knTARxRoEnS7yY451iMdh4S6TQDUfGkKoZOavmPaJCUabSHMmhM9L8f/kqlR0ykXnolSoV2ZxZNEO2kUHyEFVVEfnqIGaiKJ79Iie0Yv1YD1Zr9bbtDVjzWa20Q9Yow/9NKEb</latexit> J(n, t) = (n, t)feq(n)[ f(n,t) feq(n) f(n+1,t) feq(n+1) ] <latexit sha1_base64="ERL+iTEOocXSOzuYmrtow2tQygI=">AAACRHicdZDPSiNBEMZ71F017q5Rj14a40LE3TATgzEHQfAinhQ2KkyG0NOp0caenrG7RgjDPJwXH8CbT+DFg7LsVez8cdXFLWj4+vtVUd1fmEph0HVvnYnJqU+fp2dmS3Nfvn6bLy8sHpkk0xzaPJGJPgmZASkUtFGghJNUA4tDCcfh+e6AH1+CNiJRv7CfQhCzUyUiwRlaq1v2V/er6geu0W3aCQHZ6BJ1c7goqmqN+rQTacbzaAiK/C8p6M9XtO69g+uexcFqt1xxaxvNVqO1Sa3YatYb7ki4zRb1au6wKmRcB93yTaeX8CwGhVwyY3zPTTHImUbBJRSlTmYgZfycnYJvpWIxmCAfhlDQ79bp0SjR9iikQ/ftRM5iY/pxaDtjhmfmXzYwP2J+htFWkAuVZgiKjxZFmaSY0EGitCc0cJR9KxjXwr6V8jNmk0Gbe8mG8PJT+n9xVK95GzXvsF7ZaYzjmCHLZIVUiUeaZIfskQPSJpxckTvyQB6da+fe+e38GbVOOOOZJfKunKdnB+Gt/g==</latexit> Summing over clusters of different sizes: PN n=1 J(n,t) (n,t)feq(n) = f(1,t) feq(1) f(N+1,t) feq(N+1) <latexit sha1_base64="ZSlI9yO3zW9AkSxGd+9DwQCxUHA=">AAACVXicdVHPSxtBGJ1dfzatmtpjL0NjIUENuzEYcxAEL9KDKDQqZOMyO/k2Ds7Obme+FcKy/6SX0v+kl0Inmwgq+mDgzXvvY2beRJkUBj3vj+MuLa+srq1/qH38tLG5Vf+8fWXSXHMY8FSm+iZiBqRQMECBEm4yDSyJJFxH96cz//oBtBGp+onTDEYJmygRC87QSmFd7gQmT8JCHfvl7TkNYs148aOp9rBVFkEEyCpO47CAX2VTtWhJj+epuOlXqYXlt0q6T5+s890Xpt22yp2w3vDaB71+t39ILTnqdbrenHi9PvXbXoUGWeAirD8G45TnCSjkkhkz9L0MRwXTKLiEshbkBjLG79kEhpYqloAZFVUrJf1ulTGNU22XQlqpzycKlhgzTSKbTBjemdfeTHzLG+YYH40KobIcQfH5QXEuKaZ0VjEdCw0c5dQSxrWwd6X8jtle0H5EzZbw9FL6PrnqtP2Dtn/ZaZx0F3Wsk6/kG2kSn/TICTkjF2RAOHkkfx3HcZ3fzj932V2dR11nMfOFvIC79R/hC7Bz</latexit> Boundary condition: f(1,t) feq(1) ! 1 <latexit sha1_base64="zK79tdu+6DqLuj1zpc6Abu7QLgU=">AAACCXicdVDLSsNAFJ34rPUVdelmsBVakJK0xbS7ghuXFewDmhAm00k7dPJwZiKUkK0bf8WNC0Xc+gfu/BunD0FFDwwczrmXO+d4MaNCGsaHtrK6tr6xmdvKb+/s7u3rB4ddESUckw6OWMT7HhKE0ZB0JJWM9GNOUOAx0vMmFzO/d0u4oFF4LacxcQI0CqlPMZJKcnVYtH2OcOqXzDNZzlLfTclNVjLLGbRlBM2iqxeMSs1q1pvnUJGGVa0bC2JYTWhWjDkKYIm2q7/bwwgnAQklZkiIgWnE0kkRlxQzkuXtRJAY4QkakYGiIQqIcNJ5kgyeKmUI/YirF0o4V79vpCgQYhp4ajJAcix+ezPxL2+QSL/hpDSME0lCvDjkJwyqjLNa4JBygiWbKoIwp+qvEI+Rakaq8vKqhK+k8H/SrVbMWsW8qhZa9WUdOXAMTkAJmMACLXAJ2qADMLgDD+AJPGv32qP2or0uRle05c4R+AHt7RM9Xpi7</latexit> f(N+1,t) feq(N+1) ! 0 <latexit sha1_base64="IhZ0DdOkZRzweuHKDmPVl4MmfGo=">AAACDXicdVBLSwMxGMzWV62vqkcvwVZoUcpuW2x7K3jxJBVsLbTLkk2zbWg2uyZZoSz7B7z4V7x4UMSrd2/+G9OHoKIDgcnM95HMuCGjUpnmh5FaWl5ZXUuvZzY2t7Z3srt7HRlEApM2Dlggui6ShFFO2ooqRrqhIMh3Gbl2x2dT//qWCEkDfqUmIbF9NOTUoxgpLTnZfL7vCYRjr3BxbJ2oYhJ7Tkxukum1mMC+CqCZd7I5s1SpNaqNU6hJvVaumnNi1hrQKpkz5MACLSf73h8EOPIJV5ghKXuWGSo7RkJRzEiS6UeShAiP0ZD0NOXIJ9KOZ2kSeKSVAfQCoQ9XcKZ+34iRL+XEd/Wkj9RI/vam4l9eL1Je3Y4pDyNFOJ4/5EUM6ozTauCACoIVm2iCsKD6rxCPkG5H6QIzuoSvpPB/0imXrErJuiznmtVFHWlwAA5BAVigBprgHLRAG2BwBx7AE3g27o1H48V4nY+mjMXOPvgB4+0TZuSZ1A==</latexit> N ! 1 <latexit sha1_base64="//X0zOm7yXySiWKqtPHF283zm84=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LLaCp5K0xbS3ghdPUsHaQhPLZrtpl242YXeilNL/4cWDIl79L978N24/BBV9MPB4b4aZeUEiuAbb/rAyK6tr6xvZzdzW9s7uXn7/4EbHqaKsRWMRq05ANBNcshZwEKyTKEaiQLB2MDqf+e07pjSP5TWME+ZHZCB5yCkBI90WL7EHMfa4DGFc7OULdqni1qv1M2xIzS1X7QWx3Tp2SvYcBbREs5d/9/oxTSMmgQqiddexE/AnRAGngk1zXqpZQuiIDFjXUEkipv3J/OopPjFKH4exMiUBz9XvExMSaT2OAtMZERjq395M/MvrphDW/AmXSQpM0sWiMBXYPDqLAPe5YhTE2BBCFTe3YjokilAwQeVMCF+f4v/JTbnkVErOVbnQqC7jyKIjdIxOkYNc1EAXqIlaiCKFHtATerburUfrxXpdtGas5cwh+gHr7ROulJH0</latexit> as
  11. Nucleation Kinetics: Constrained Equilibrium J(n, t) = [ P1 n=1

    1 (n,t)feq(n) ] 1 <latexit sha1_base64="llVo8TyOTb93leVUFM8jwjFS3dM=">AAACLHicdVBNSxxBFOzR+JFN1NUcvTRZAyvoMrMurnsQBC8hJwNZFXbGoaf3jTb29Izdb4SlmR/kxb8SEA9KyDW/I70fASNJQUNRVY/Xr5JCCoO+/+zNzb9ZWFxaflt7935lda2+vnFq8lJz6PNc5vo8YQakUNBHgRLOCw0sSyScJdfHY//sFrQRufqGowKijF0qkQrO0Elx/XjrS1Pt4DY9pIPQlFls1WFQXYRCpTiiYaoZt0FlwwSQTYNpbOGmaqptWkUXdjeotuJ6w2/tdXud3j515KDb7vhT4nd7NGj5EzTIDCdx/SEc5rzMQCGXzJhB4BcYWaZRcAlVLSwNFIxfs0sYOKpYBiayk2Mr+skpQ5rm2j2FdKK+nLAsM2aUJS6ZMbwyr72x+C9vUGJ6EFmhihJB8emitJQUczpujg6FBo5y5AjjWri/Un7FXEHo+q25Ev5cSv9PTtutYK8VfG03jjqzOpbJJvlImiQgXXJEPpMT0iec3JHv5Ik8e/feo/fD+zmNznmzmQ/kL3i/fgMyT6Zg</latexit> Now since we know condensation rate, to know the nucleation rate we need to know equilibrium cluster distribution Equilibrium cluster distribution: Probability of occurring an equilibrium cluster distribution p(n) = feq(n) f1 / exp[ W (n) kBT ] <latexit sha1_base64="set92RxvPVryqyVa6Kk/NIT7NrE=">AAACKHicdVDLahsxFNU4aZu6j0yTZTciTsFd1MzYprYXoSHdZOmAX2APg0a+4whrNKqkCTHDfE42/ZVsQkgp3vZLIj8CbWkPCA7n3MvVOZHkTBvPWzqlnd1nz1/svSy/ev3m7b777mCg00xR6NOUp2oUEQ2cCegbZjiMpAKSRByG0fzryh9egdIsFT2zkBAkZCZYzCgxVgrdL8eyKj7iEzyJFaF5HObwrbBKYalf4IlUqTQphms5/rQZGa7deXiGe0VwHLoVr9ZodZqdz9iSdqve9DbEa3WwX/PWqKAtuqF7P5mmNEtAGMqJ1mPfkybIiTKMcijKk0yDJHROZjC2VJAEdJCvgxb4g1WmOE6VfcLgtfr7Rk4SrRdJZCcTYi71395K/Jc3zkzcDnImZGZA0M2hOOPYRl+1hqdMATV8YQmhitm/YnpJbB3Gdlu2JTwlxf8ng3rNb9T8i3rltLmtYw+9R0eoinzUQqfoHHVRH1F0g27RA/rhfHfunJ/OcjNacrY7h+gPOL8eAU4CpYg=</latexit> W(n) is the minimum work required to form a n-molecule cluster feq(n) = f1 exp[ W (n) kBT ] <latexit sha1_base64="8e9OU8VuMT+pMCYzOWaO9EeBAuo=">AAACFXicdVBNS8NAEN34bf2qevSyWAUFLUkt1h6EohePFawV2hA224ku3Wzi7kYsIX/Ci3/FiwdFvAre/DduPwQVfTDweG+GmXl+zJnStv1hjY1PTE5Nz8zm5uYXFpfyyyvnKkokhQaNeCQvfKKAMwENzTSHi1gCCX0OTb973PebNyAVi8SZ7sXghuRSsIBRoo3k5Xc2Ai+F62xLbONDHHgObmO4jVu77UASmjaNnqVd7wifZe6Gly/Yxb1KtVzdx4YcVEple0jsShU7RXuAAhqh7uXf252IJiEITTlRquXYsXZTIjWjHLJcO1EQE9oll9AyVJAQlJsOvsrwplE6OIikKaHxQP0+kZJQqV7om86Q6Cv12+uLf3mtRAcHbspEnGgQdLgoSDjWEe5HhDtMAtW8ZwihkplbMb0iJg5tgsyZEL4+xf+T81LR2Ss6p6VCrTyKYwatoXW0hRxUQTV0guqogSi6Qw/oCT1b99aj9WK9DlvHrNHMKvoB6+0TXQWdDw==</latexit> f1 is the concentration of single molecule clusters i.e., metastable bulk phase because for such clusters W(1) = 0
  12. Nucleation Kinetics: Summary up to now J(n, t) = [

    P1 n=1 1 (n,t)feq(n) ] 1 <latexit sha1_base64="llVo8TyOTb93leVUFM8jwjFS3dM=">AAACLHicdVBNSxxBFOzR+JFN1NUcvTRZAyvoMrMurnsQBC8hJwNZFXbGoaf3jTb29Izdb4SlmR/kxb8SEA9KyDW/I70fASNJQUNRVY/Xr5JCCoO+/+zNzb9ZWFxaflt7935lda2+vnFq8lJz6PNc5vo8YQakUNBHgRLOCw0sSyScJdfHY//sFrQRufqGowKijF0qkQrO0Elx/XjrS1Pt4DY9pIPQlFls1WFQXYRCpTiiYaoZt0FlwwSQTYNpbOGmaqptWkUXdjeotuJ6w2/tdXud3j515KDb7vhT4nd7NGj5EzTIDCdx/SEc5rzMQCGXzJhB4BcYWaZRcAlVLSwNFIxfs0sYOKpYBiayk2Mr+skpQ5rm2j2FdKK+nLAsM2aUJS6ZMbwyr72x+C9vUGJ6EFmhihJB8emitJQUczpujg6FBo5y5AjjWri/Un7FXEHo+q25Ev5cSv9PTtutYK8VfG03jjqzOpbJJvlImiQgXXJEPpMT0iec3JHv5Ik8e/feo/fD+zmNznmzmQ/kL3i/fgMyT6Zg</latexit> feq(n) = f1 exp[ W (n) kBT ] <latexit sha1_base64="8e9OU8VuMT+pMCYzOWaO9EeBAuo=">AAACFXicdVBNS8NAEN34bf2qevSyWAUFLUkt1h6EohePFawV2hA224ku3Wzi7kYsIX/Ci3/FiwdFvAre/DduPwQVfTDweG+GmXl+zJnStv1hjY1PTE5Nz8zm5uYXFpfyyyvnKkokhQaNeCQvfKKAMwENzTSHi1gCCX0OTb973PebNyAVi8SZ7sXghuRSsIBRoo3k5Xc2Ai+F62xLbONDHHgObmO4jVu77UASmjaNnqVd7wifZe6Gly/Yxb1KtVzdx4YcVEple0jsShU7RXuAAhqh7uXf252IJiEITTlRquXYsXZTIjWjHLJcO1EQE9oll9AyVJAQlJsOvsrwplE6OIikKaHxQP0+kZJQqV7om86Q6Cv12+uLf3mtRAcHbspEnGgQdLgoSDjWEe5HhDtMAtW8ZwihkplbMb0iJg5tgsyZEL4+xf+T81LR2Ss6p6VCrTyKYwatoXW0hRxUQTV0guqogSi6Qw/oCT1b99aj9WK9DlvHrNHMKvoB6+0TXQWdDw==</latexit> (n) = pv p 2⇡m1kBT s1n2/3 <latexit sha1_base64="jOjcUHAGUu5Nc6FLRldmRaw2I8Y=">AAACI3icdZDLSsNAFIYn3q23qks3g1XQTU3SYq0giG5cKlgVmhom00kdOpnEmROhhLyLG1/FjQtF3LjwXZxeBBX9YeDjP+dw5vxBIrgG2363xsYnJqemZ2YLc/MLi0vF5ZULHaeKsgaNRayuAqKZ4JI1gINgV4liJAoEuwy6x/365R1TmsfyHHoJa0WkI3nIKQFj+cX9DS9gQLbkNj7AXqgIzZLruzzz9K2CzPUSjiPfwV3/CJ/nOdaG5XXm7lTyDb9YssuVWr1a38UG9mpu1R6CXatjp2wPVEIjnfrFV68d0zRiEqggWjcdO4FWRhRwKlhe8FLNEkK7pMOaBiWJmG5lgxtzvGmcNg5jZZ4EPHC/T2Qk0roXBaYzInCjf9f65l+1ZgrhXivjMkmBSTpcFKYCQ4z7geE2V4yC6BkgVHHzV0xviAkKTKwFE8LXpfh/uHDLTqXsnLmlw+oojhm0htbRFnJQDR2iE3SKGoiie/SIntGL9WA9Wa/W27B1zBrNrKIfsj4+AUkQosc=</latexit> Nucleation rate: condensation rate: Equilibrium cluster distribution: How to find W(n)?
  13. Nucleation Kinetics: Thermodynamics Use thermodynamics to find W(n) Laws of

    thermodynamics: Gibbs-Duhem equation: Gibbs free energy: U(S, V, N) = TS + µN pV <latexit sha1_base64="1a3kgxjd8p9llivUAaNXvlxB8uE=">AAACBXicdVBLS0JBFJ5rL7OX1bIWhywwMrlXJXURCG1aieETVGTuOOrg3AczcwMRN236K21aFNG2/9Cuf9P4CCrqgwMf33cO55zP9jmTyjQ/jNDS8srqWng9srG5tb0T3d2rSS8QhFaJxz3RsLGknLm0qpjitOELih2b07o9vJr69VsqJPPcihr5tO3gvst6jGClpU708LgaLydqieIpXEKlDGfQcgIowjn4teNONGYm09l8Jn8BmuSyqYw5J2Y2D1bSnCGGFih1ou+trkcCh7qKcCxl0zJ91R5joRjhdBJpBZL6mAxxnzY1dbFDZXs8+2ICJ1rpQs8TulwFM/X7xBg7Uo4cW3c6WA3kb28q/uU1A9XLtcfM9QNFXTJf1As4KA+mkUCXCUoUH2mCiWD6ViADLDBROriIDuHrU/if1FJJK520blKxQmYRRxgdoCMURxbKogK6RiVURQTdoQf0hJ6Ne+PReDFe560hYzGzj37AePsEi1+UwQ==</latexit> dU = TdS + µdN pdV <latexit sha1_base64="VPdBSe5saB2PObA6rLH/geLqnmw=">AAACAnicdVBNS0JBFJ3Xp9mX1SraXNIgiOQ9ldRFILRpFUY+FVRk3rxRB+d9MDMvkIe06a+0aVFE235Fu/5N40dQUQcuHM65l3vvcULOpDLND2NhcWl5ZTWxllzf2NzaTu3s1mUQCUJtEvBANB0sKWc+tRVTnDZDQbHncNpwhhcTv3FLhWSBX1OjkHY83PdZjxGstNRN7WdcG86h5t7ACbS9CNwrOIXQrWe6qbSZzRfLhfIZaFIq5grmjJjFMlhZc4o0mqPaTb233YBEHvUV4VjKlmWGqhNjoRjhdJxsR5KGmAxxn7Y09bFHZSeevjCGI6240AuELl/BVP0+EWNPypHn6E4Pq4H87U3Ev7xWpHqlTsz8MFLUJ7NFvYiDCmCSB7hMUKL4SBNMBNO3AhlggYnSqSV1CF+fwv+knsta+ax1nUtXCvM4EugAHaJjZKEiqqBLVEU2IugOPaAn9GzcG4/Gi/E6a10w5jN76AeMt0/5SJST</latexit> 0 = SdT Ndµ + V dp <latexit sha1_base64="eQxAf5i9Bk0ekKhdaODsBQ9UqOQ=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWArCNKStMW0C6HgxpVU7AvaUCaTSTt08mBmIpRQN/6KGxeKuPUv3Pk3Th+Cih64cDjnXu69x4kYFdIwPrTU0vLK6lp6PbOxubW9o+/utUQYc0yaOGQh7zhIEEYD0pRUMtKJOEG+w0jbGV1M/fYt4YKGQUOOI2L7aBBQj2IkldTXD3IGPIf5G7cB8/DK7fkxPIUtN8r19axRKFnVcvUMKlKximVjTgyrCs2CMUMWLFDv6+89N8SxTwKJGRKiaxqRtBPEJcWMTDK9WJAI4REakK6iAfKJsJPZBxN4rBQXeiFXFUg4U79PJMgXYuw7qtNHcih+e1PxL68bS69iJzSIYkkCPF/kxQzKEE7jgC7lBEs2VgRhTtWtEA8RR1iq0DIqhK9P4f+kVSyYpYJ5XczWyos40uAQHIETYAIL1MAlqIMmwOAOPIAn8Kzda4/ai/Y6b01pi5l98APa2ycKjZQN</latexit> G(p, T, N) = U TS + pV = µN <latexit sha1_base64="xazAl01Z5nBccoKiQXVAAbLDu1Y=">AAACCHicdVBNS0JBFJ1nX2ZfVssWDWlgVPKeSuoiEFrUSox8KuhD5o2jDs6895iZF4i4bNNfadOiiLb9hHb9m8aPoKIOXDhzzr3MvccNGJXKND+MyMLi0vJKdDW2tr6xuRXf3qlJPxSY2Nhnvmi4SBJGPWIrqhhpBIIg7jJSdwcXE79+S4SkvldVw4A4HPU82qUYKS214/vJy1RwUj0pH8FzaMNTWL05hkFNP1o8hOVkO54w09l8MVc8g5oU8pmcOSNmvgittDlFAsxRacffWx0fh5x4CjMkZdMyA+WMkFAUMzKOtUJJAoQHqEeamnqIE+mMpoeM4aFWOrDrC12eglP1+8QIcSmH3NWdHKm+/O1NxL+8Zqi6BWdEvSBUxMOzj7ohg8qHk1RghwqCFRtqgrCgeleI+0ggrHR2MR3C16Xwf1LLpK1s2rrOJEq5eRxRsAcOQApYIA9K4ApUgA0wuAMP4Ak8G/fGo/FivM5aI8Z8Zhf8gPH2CS/BlZ4=</latexit> dG = µdN SdT + V dp <latexit sha1_base64="WtR4LzikFUf4uiG7P4S2L0Wz/SE=">AAAB/nicdVDLSsNAFJ34rPUVFVduBltBEEPSFtMuhIILXUnFvqANZTKZtEMnD2YmQgkFf8WNC0Xc+h3u/BunD0FFD1w4nHMv997jxowKaZof2sLi0vLKamYtu76xubWt7+w2RZRwTBo4YhFvu0gQRkPSkFQy0o45QYHLSMsdXkz81h3hgkZhXY5i4gSoH1KfYiSV1NP3897lOewGCfSu4emtVz9penG+p+dMo2hXSpUzqEjZLpTMGTHtCrQMc4ocmKPW09+7XoSTgIQSMyRExzJj6aSIS4oZGWe7iSAxwkPUJx1FQxQQ4aTT88fwSCke9COuKpRwqn6fSFEgxChwVWeA5ED89ibiX14nkX7ZSWkYJ5KEeLbITxiUEZxkAT3KCZZspAjCnKpbIR4gjrBUiWVVCF+fwv9Js2BYRcO6KeSqpXkcGXAADsExsIANquAK1EADYJCCB/AEnrV77VF70V5nrQvafGYP/ID29gl63JPd</latexit>
  14. Nucleation Kinetics: Assumptions of CNT Assumptions of classical nucleation theory:

    ➤ Using thermodynamics at the few molecule level ➤ Liquid phase (embryo) is homogeneous and spherical in shape ➤ The density of the liquid phase is same as bulk phase ➤ Capillarity approximation: The interface between the bulk phase and liquid phase is sharp ➤ No impact of curvature on surface tension ➤ Liquid is incompressible
  15. Nucleation Kinetics: Thermodynamics Consider hypothetical (vapor + liquid drop) system

    Supersturated liquid phase (l) lnterface (s) N = Nv + Nl + Ns <latexit sha1_base64="8RThRE9Z6ddXm9arS5AJ3l9gwKQ=">AAAB/nicdVDLSsNAFJ3UV62vqLhyM9gKghCStph2IRTcuCoVrC20IUymk3bo5MHMpFBCwV9x40IRt36HO//GaVpBRQ/M5XDOvdw7x4sZFdI0P7Tcyura+kZ+s7C1vbO7p+8f3Iko4Zi0ccQi3vWQIIyGpC2pZKQbc4ICj5GON76a+50J4YJG4a2cxsQJ0DCkPsVIKsnVj0pNeAmb7gSeq8qyKkquXjSNil2v1i+gIjW7XDUXxLTr0DLMDEWwRMvV3/uDCCcBCSVmSIieZcbSSRGXFDMyK/QTQWKEx2hIeoqGKCDCSbPzZ/BUKQPoR1y9UMJM/T6RokCIaeCpzgDJkfjtzcW/vF4i/ZqT0jBOJAnxYpGfMCgjOM8CDignWLKpIghzqm6FeIQ4wlIlVlAhfP0U/k/uyoZVMaybcrFRXcaRB8fgBJwBC9igAa5BC7QBBil4AE/gWbvXHrUX7XXRmtOWM4fgB7S3T0KykxU=</latexit> U = Uv + Ul + Us <latexit sha1_base64="1qp9lVjDSTeIJj2IAUiei6ITSEE=">AAAB/nicdVDLSsNAFJ34rPUVFVduBltBEELSFtMuhIIblxVMW2hDmEwn7dDJg5lJoYSCv+LGhSJu/Q53/o3TtIKKHpjL4Zx7uXeOnzAqpGl+aCura+sbm4Wt4vbO7t6+fnDYFnHKMXFwzGLe9ZEgjEbEkVQy0k04QaHPSMcfX8/9zoRwQePoTk4T4oZoGNGAYiSV5OnHZQdeQcebwAtVWV5F2dNLplG1G7XGJVSkbldq5oKYdgNahpmjBJZoefp7fxDjNCSRxAwJ0bPMRLoZ4pJiRmbFfipIgvAYDUlP0QiFRLhZfv4MnillAIOYqxdJmKvfJzIUCjENfdUZIjkSv725+JfXS2VQdzMaJakkEV4sClIGZQznWcAB5QRLNlUEYU7VrRCPEEdYqsSKKoSvn8L/SbtiWFXDuq2UmrVlHAVwAk7BObCADZrgBrSAAzDIwAN4As/avfaovWivi9YVbTlzBH5Ae/sEbmSTMQ==</latexit> Uv(r) = TvSv(r) + µvNv(r) pvVv(r) <latexit sha1_base64="EZME+walKmMYVQKkcDfm+cOjZDk=">AAACF3icdZBNSwJBGMdnezV7szp2GdLAiJZdldRDIHTpFEauCirL7Djq4OwLM7MLIn6LLn2VLh2K6Fq3vk3jrkFF/WHgN//neZh5/k7AqJCG8aEtLa+srq2nNtKbW9s7u5m9/abwQ46JhX3m87aDBGHUI5akkpF2wAlyHUZazvhyXm9FhAvqew05CUjPRUOPDihGUll2Rs9ZdpTnJ/ACNuzoNuFT2HVDO7pObmcwsKNmzDk7kzX0Yrlaqp5DBZVyoWQkYJSr0NSNWFmwUN3OvHf7Pg5d4knMkBAd0whkb4q4pJiRWbobChIgPEZD0lHoIZeI3jTeawaPldOHA5+r40kYu98npsgVYuI6qtNFciR+1+bmX7VOKAeV3pR6QSiJh5OHBiGD0ofzkGCfcoIlmyhAmFP1V4hHiCMsVZRpFcLXpvB/aBZ0s6ibN4VsrbSIIwUOwRHIAxOUQQ1cgTqwAAZ34AE8gWftXnvUXrTXpHVJW8wcgB/S3j4B0ZCclA==</latexit> Ul(r) = TlSl(r) + µlNl(r) plVl(r) <latexit sha1_base64="VBgDIk6rkCyIu13eDuGhzNmh2is=">AAACF3icdZBNSwJBGMdn7c3sbatjlyENjGjZVUk9BEKXTmHkqqCyzI6jDs6+MDMbyOK36NJX6dKhiK5169s0ugYV9YeB3/yf52Hm+bsho0Ka5oeWWlpeWV1Lr2c2Nre2d/TdvaYIIo6JjQMW8LaLBGHUJ7akkpF2yAnyXEZa7vhiVm/dEi5o4DfkJCQ9Dw19OqAYSWU5upGzHZbnx/AcNhx2k/AJ7HqRw66S2ykMHdacc87Rs6ZRLFdL1TOooFIulMwEzHIVWoY5VxYsVHf0924/wJFHfIkZEqJjmaHsxYhLihmZZrqRICHCYzQkHYU+8ojoxfO9pvBIOX04CLg6voRz9/tEjDwhJp6rOj0kR+J3bWb+VetEclDpxdQPI0l8nDw0iBiUAZyFBPuUEyzZRAHCnKq/QjxCHGGposyoEL42hf9Ds2BYRcO6LmRrpUUcaXAADkEeWKAMauAS1IENMLgDD+AJPGv32qP2or0mrSltMbMPfkh7+wRhkpxO</latexit> Us(r) = TsSs(r) + µsNs(r) + A(r) <latexit sha1_base64="BVHmg19SXACqFEp760ze2uGPzKo=">AAACGXicdVDLSgMxFM3UV62vUZdugq1QEcpMW2y7ECpuXEnFji20ZcikaRuazAxJRihDf8ONv+LGhSIudeXfmD4UFT0QOPece7m5xwsZlcqy3o3EwuLS8kpyNbW2vrG5ZW7vXMsgEpg4OGCBaHpIEkZ94iiqGGmGgiDuMdLwhmcTv3FDhKSBX1ejkHQ46vu0RzFSWnJNK+O4MisO4Qmsu/Jqxo9gm0euvPiq+ohzBE91lXHNtJUrlCrFyjHUpFzKF60ZsUoVaOesKdJgjpprvra7AY448RVmSMqWbYWqEyOhKGZknGpHkoQID1GftDT1ESeyE08vG8MDrXRhLxD6+QpO1e8TMeJSjrinOzlSA/nbm4h/ea1I9cqdmPphpIiPZ4t6EYMqgJOYYJcKghUbaYKwoPqvEA+QQFjpMFM6hM9L4f/kOp+zCzn7Mp+uFudxJMEe2AdZYIMSqIJzUAMOwOAW3INH8GTcGQ/Gs/Eya00Y85ld8APG2weUuJzn</latexit> W(n) = free energy of (vapor + liquid drop) - free energy of pure vapour G = (pv pl)vl + A + Nl[µl(pl) µv(pv)] + Ns[µs µv(pv)] <latexit sha1_base64="PoAhChGveooqAb0C9LKWTCoHoTg=">AAACRnicdVDPSxtBGP029odNf0U99vLRWIgUw24MxhwESwt6KhYaFbLL8u1kEgdndpeZ2UAI/nVePHvzT+ilh5bi1dlNCra0DwbevPc9vpmX5FIY6/u3Xm3l0eMnT1ef1Z+/ePnqdWNt/cRkhWZ8wDKZ6bOEDJci5QMrrORnueakEslPk4uPpX865dqILP1qZzmPFE1SMRaMrJPiRrQZfuLSEh7iPrbyeIrbmMdyaxpLfI/hhJQi/ODo51gOQ1XEslXabqq8TMvEVlTZprLN9gN9M240/fZOr9/t76Ije71O118Qv9fHoO1XaMISx3HjJhxlrFA8tUySMcPAz200J20Fk/yyHhaG58QuaMKHjqakuInmVQ2X+M4pIxxn2p3UYqU+TMxJGTNTiZtUZM/N314p/ssbFna8F81FmheWp2yxaFxItBmWneJIaM6snDlCTAv3VmTnpIlZ13zdlfD7p/h/ctJpBzvt4EunedBd1rEKb+AttCCAHhzAERzDABhcwTf4AT+9a++798u7W4zWvGVmA/5ADe4B472szQ==</latexit> Equimolar interface: Incompressible liquid phase: G = (pv pl)vl + eAe + Nl[µl(pl) µv(pv)] <latexit sha1_base64="a5MrTRBsBHD+ZxM4n59NjwjdMIc=">AAACMnicdVBdaxNBFJ2tVWv8aFoffbk0FVKKYTcNpnkQKhaqL1LBtIXsMtyd3KRDZ3aXmdlACP1NvvhLBB/0wVL62h/hbBJBRS9cOHPuOdy5Jy2UtC4MvwUrd1bv3ru/9qD28NHjJ+v1jc0Tm5dGUF/kKjdnKVpSMqO+k07RWWEIdaroNL14U81PJ2SszLOPblpQonGcyZEU6DzF6++240NSDuEIXkGz4BN4AQVXOxOuYBfiMWqNnOC17114z9Ug1iVXzUrildVjUrl2km1eb4StvW6v03sJHux3251wAcJuD6JWOK8GW9Yxr3+Jh7koNWVOKLR2EIWFS2ZonBSKLmtxaalAcYFjGniYoSabzOYnX8JzzwxhlBvfmYM5+7tjhtraqU69UqM7t3/PKvJfs0HpRvvJTGZF6SgTi0WjUoHLocoPhtKQcGrqAQoj/V9BnKNB4XzKNR/Cr0vh/+Ck3Yr2WtGHduOgs4xjjT1jW6zJItZlB+wtO2Z9Jtgn9pX9YFfB5+B7cB3cLKQrwdLzlP1Rwe1P8WamYw==</latexit> µl(pl) = µl(pv) + vl(pl pv) <latexit sha1_base64="l5y938QiJ5qRM+8DMdKS0cerq7A=">AAACEXicdVDLSgMxFM3UV62vUZdugq3QIpaZtth2IRTcuKxgH9AOQybNtKHJzJBkCqX0F9z4K25cKOLWnTv/xvQFKnogcO4593JzjxcxKpVlfRqJtfWNza3kdmpnd2//wDw8asowFpg0cMhC0faQJIwGpKGoYqQdCYK4x0jLG17P/NaICEnD4E6NI+Jw1A+oTzFSWnLNbKbLY5dlI5fl4BVcFaMcPIejhX4xKzOumbbyxXK1VL2EmlTKhZK1IFa5Cu28NUcaLFF3zY9uL8QxJ4HCDEnZsa1IORMkFMWMTFPdWJII4SHqk46mAeJEOpP5RVN4ppUe9EOhX6DgXP0+MUFcyjH3dCdHaiB/ezPxL68TK7/iTGgQxYoEeLHIjxlUIZzFA3tUEKzYWBOEBdV/hXiABMJKh5jSIawuhf+TZiFvF/P2bSFdKy3jSIITcAqywAZlUAM3oA4aAIN78AiewYvxYDwZr8bbojVhLGeOwQ8Y71/5BJsx</latexit> G = eAe + Nl[µl(pv) µv(pv)] <latexit sha1_base64="d8QkYyupVmcej01AnJlzi74r5jw=">AAACIXicdVBdSxtBFJ31o7WxH6k+9uViLCilYTeGJnkQlAr6JBaMCtlluTu5iYMzu8vMbCAE/4ov/pW+9EER34p/xslHQYseuHDuOfcyc0+SS2Gs7//15uYXFt+8XXpXWn7/4eOn8ueVE5MVmlObZzLTZwkakiKlthVW0lmuCVUi6TS5+Dn2TwekjcjSYzvMKVLYT0VPcLROisvN9XCPpEXYh20I+6gUxgS7rr7BYSw7oSpiuZHHg034DuNmMGmi9bhc8atbjVa99QMcaTZqdX9K/EYLgqo/QYXNcBSX78NuxgtFqeUSjekEfm6jEWoruKTLUlgYypFfYJ86jqaoyESjyYWX8NUpXehl2lVqYaI+3RihMmaoEjep0J6b/72x+JLXKWyvGY1EmheWUj59qFdIsBmM44Ku0MStHDqCXAv3V+DnqJFbF2rJhfDvUnidnNSqwVY1+FWr7NRncSyxL2yNbbCANdgOO2BHrM04u2K/2Q279a69P96ddz8dnfNmO6vsGbyHR9awoNk=</latexit> G = µ n + eAe <latexit sha1_base64="V1RyYyS/ojHLs84qF5pHrM9y/F0=">AAACFHicdZDPSxtBFMdnrbWaVk3bo5eHsVAQw24MjTkUFAU9KjQqZMPydvKSDM7MLjOzhRD8I3rxX/HSg6V49eDN/8bJD8EW/cLAh+97jzfvm+ZSWBeGD8Hcm/m3C+8Wl0rvPyyvrJY/fjq1WWE4tXgmM3OeoiUpNLWccJLOc0OoUkln6cX+uH72k4wVmf7hhjl1FPa16AmOzltJeXMjPiDpEA7hO2zNOFYFxKBhE+I+KoUJwV5CG0m5Ela3G8168xt42GnU6uEUwkYTomo4UYXNdJyU7+NuxgtF2nGJ1rajMHedERonuKTLUlxYypFfYJ/aHjUqsp3R5KhL+OKdLvQy4592MHGfT4xQWTtUqe9U6Ab2/9rYfKnWLlxvpzMSOi8caT5d1CskuAzGCUFXGOJODj0gN8L/FfgADXLncyz5EJ4uhdfhtFaNtqvRSa2yW5/FscjW2Dr7yiLWYLvsiB2zFuPsF7tmN+xPcBX8Dv4Gt9PWuWA285n9o+DuEQm1m6w=</latexit>
  16. Nucleation Kinetics: Thermodynamics G(n) = µ n + eAe(n) <latexit

    sha1_base64="RuRMpBrPScNzn8tbe7F4oq4zHgE=">AAACG3icdVBdSxtBFJ3VfqTpV9THvlwaC5bSsBuDMQ+CoqCPCo0K2bDcndzEwZnZZWZWCCH/wxf/ii99qIhPgg/+GycfQlvaAwNnzjmXmXvSXArrwvAxWFh88fLV69Kb8tt37z98rCwtH9usMJzaPJOZOU3RkhSa2k44Sae5IVSppJP0fHfin1yQsSLTP9wwp67CgRZ9wdF5KanUV+M9kg5hH9b0V9iC7/N7rAqIQcM3iAeoFCYEOwn5zGpSqYa19War0doATzab9UY4I2GzBVEtnKLK5jhMKvdxL+OFIu24RGs7UZi77giNE1zSuBwXlnLk5zigjqcaFdnuaLrbGL54pQf9zPijHUzV3ydGqKwdqtQnFboz+7c3Ef/ldQrX3+yOhM4LR5rPHuoXElwGk6KgJwxxJ4eeIDfC/xX4GRrkztdZ9iU8bwr/J8f1WrRei47q1e3GvI4S+8Q+szUWsSbbZgfskLUZZ5fsmv1iN8FV8DO4De5m0YVgPrPC/kDw8ATXk52Q</latexit> Ae(n) = s1n2/3 <latexit sha1_base64="QEvOxpAdLMj/ChuI29h0y+nHYYM=">AAAB/3icdVDLSsNAFJ34rPVVFdy4GWyFuolJWky7ECpuXFawD2hrmEyn7dDJJMxMhBK78FfcuFDErb/hzr9x+hBU9MCFwzn3cu89fsSoVJb1YSwsLi2vrKbW0usbm1vbmZ3dugxjgUkNhywUTR9JwignNUUVI81IEBT4jDT84cXEb9wSIWnIr9UoIp0A9TntUYyUlrzMfu7cI3l+DM+g9GzIbxLnpDDOeZmsZRbccrF8CjUpuU7RmhHLLUPbtKbIgjmqXua93Q1xHBCuMENStmwrUp0ECUUxI+N0O5YkQniI+qSlKUcBkZ1kev8YHmmlC3uh0MUVnKrfJxIUSDkKfN0ZIDWQv72J+JfXilWv1Ekoj2JFOJ4t6sUMqhBOwoBdKghWbKQJwoLqWyEeIIGw0pGldQhfn8L/Sd0x7YJpXznZSnEeRwocgEOQBzZwQQVcgiqoAQzuwAN4As/GvfFovBivs9YFYz6zB37AePsElPaT3g==</latexit> G(n) = µ n + es1n2/3 <latexit sha1_base64="hkDZECF6ASgGSX/fYtUOYbaFo+U=">AAACIHicdVBNaxsxENUm/UjdLyc59jLUKaSUOru2ycaHQqCB9JhCnQS87jIrjx0RSbtI2oBZ/FNyyV/ppYeG0NzaXxP5o9CW9sHA03szaOZlhRTWheGPYGX13v0HD9ce1R4/efrseX1949jmpeHU47nMzWmGlqTQ1HPCSTotDKHKJJ1k5+9n/skFGSty/clNChooHGsxEhydl9J6vJUckHQIh7CtX8M7eLt8J6qEBDS8gWSMSmFKYNMI9OeqtdOebqX1Rthsx91Odxc82YtbnXBBwrgLUTOco8GWOErrt8kw56Ui7bhEa/tRWLhBhcYJLmlaS0pLBfJzHFPfU42K7KCaHziFV14Zwig3vrSDufr7RIXK2onKfKdCd2b/9mbiv7x+6UZ7g0roonSk+eKjUSnB5TBLC4bCEHdy4glyI/yuwM/QIHc+05oP4del8H9y3GpG7Wb0sdXY7yzjWGMv2Eu2zSIWs332gR2xHuPskn1h39h1cBV8DW6C74vWlWA5s8n+QPDzDnqJn3k=</latexit> Critical cluster size: µ + 2 3 s1 e(n⇤) 1/3 = 0 <latexit sha1_base64="JDuFAgEQUKbpHqHPbvqIav7uzZY=">AAACJHicdVBNaxRBEO2JX3H9WvXopXAjRCXrzO7iZhEhEA8eI7hJYGcz1PTWbJp09wzdPcIyzI/x4l/x4iEx5JBLfkt6PwQVfVDweK+KqnppIYV1YXgZrN24eev2nfW7jXv3Hzx81Hz8ZN/mpeE05LnMzWGKlqTQNHTCSTosDKFKJR2kJ7tz/+ALGSty/dnNChornGqRCY7OS0nz3cZW/IGkQ4hVCa8hzgzyqlNX3RpsEsVTVAoTgk19VL2qXx5VW9Ebb8F7CDeSZitsd/uD3uAteLLd7/TCJQn7A4ja4QIttsJe0vwZT3JeKtKOS7R2FIWFG1donOCS6kZcWiqQn+CURp5qVGTH1eLJGl54ZQJZbnxpBwv194kKlbUzlfpOhe7Y/u3NxX95o9Jl2+NK6KJ0pPlyUVZKcDnME4OJMMSdnHmC3Ah/K/Bj9DE5n2vDh/DrU/g/2e+0o247+tRp7fRWcayzZ+w522QR67Md9pHtsSHj7Cv7zk7ZWfAt+BGcBxfL1rVgNfOU/YHg6hqdA6Gl</latexit> n⇤ = 32⇡ 3 v2 l 3 µ3 <latexit sha1_base64="xcULg7W386rl5AJZIDJfgs/8QWU=">AAACJXicdVBdSxtBFJ21ttXY1rU+9mUwFkofwn6EJgEFwT74GMGokE3C3clsMmRmdpmZDYRl/0xf+ld88cEggk/+FScfQlvqgYFzz7mXO/fEGWfaeN6js/Fm8+2791vblZ0PHz/tunufL3WaK0I7JOWpuo5BU84k7RhmOL3OFAURc3oVT04X/tWUKs1SeWFmGe0JGEmWMALGSgP36FD2i+8lPsZRooAUYRBlrCzCcl1PB7wfRCMQAvphWUQ/KTeAI5Hb6nDgVr1a2GjVWz+wJc1GUPdWxGu0sF/zlqiiNdoDdx4NU5ILKg3hoHXX9zLTK0AZRjgtK1GuaQZkAiPatVSCoLpXLK8s8VerDHGSKvukwUv1z4kChNYzEdtOAWas//UW4v+8bm6SZq9gMssNlWS1KMk5NileRIaHTFFi+MwSIIrZv2IyBpuOscFWbAgvl+LXyWVQ88Oafx5UT+rrOLbQF3SAviEfNdAJOkNt1EEE/UI36A7Nnd/OrXPvPKxaN5z1zD76C87TM6AapLw=</latexit> G⇤ = G(n⇤) = 16⇡ 3 v2 l 3 µ2 <latexit sha1_base64="WMe6v/M/1zCiSjqv7q/iIRuYPFU=">AAACP3icdVBNSyNBEO3xY1eju2bdo5dmo6B7CDOTYMxBEBT06IKJQiYJNZ2e2NjdM3T3CGGYf+bFv+Btr172sCJevdmTjLAuWtDw6r16VNcLE860cd3fztz8wuKnz0vLlZXVL1/Xqt/WuzpOFaEdEvNYXYSgKWeSdgwznF4kioIIOT0Prw4L/fyaKs1ieWYmCe0LGEsWMQLGUsNqdzM4otwAPh5kP3O8j1/bbVkQO7igIgUk83aDhOVZIy/76yEf+MEYhIBBI89KXyDSgZ9vDqs1t95otZvtXWzBXstvujPgttrYq7vTqqGyTofVu2AUk1RQaQgHrXuem5h+BsowwmleCVJNEyBXMKY9CyUIqvvZ9P4cb1lmhKNY2ScNnrL/OjIQWk9EaCcFmEv9v1aQ72m91ER7/YzJJDVUktmiKOXYxLgIE4+YosTwiQVAFLN/xeQSbDrGRl6xIbxeij8GXb/uNereL7920CzjWEIb6AfaRh5qoQN0gk5RBxF0g+7RX/Tg3Dp/nEfnaTY655Se7+hNOc8veeetiQ==</latexit> Height of nucleation barrier: Surface term Volume term Surface + Volume n G <latexit sha1_base64="vEMFqaRr2AYZUz70ezEOQAsvWxQ=">AAAB8XicdVDJSgNBEO2JW4xb1KOXxkTwFGaioMeggh4jmAWTIfR0KkmTnp6hu0YIQ/7CiwdFvPo33vwbO4vg+qDpx3tVVNULYikMuu67k1lYXFpeya7m1tY3Nrfy2zt1EyWaQ41HMtLNgBmQQkENBUpoxhpYGEhoBMPzid+4A21EpG5wFIMfsr4SPcEZWum22L4AiYxeFjv5gls6diegv4lXmv5ugcxR7eTf2t2IJyEo5JIZ0/LcGP2UaRRcwjjXTgzEjA9ZH1qWKhaC8dPpxmN6YJUu7UXaPoV0qn7tSFlozCgMbGXIcGB+ehPxL6+VYO/UT4WKEwTFZ4N6iaQY0cn5tCs0cJQjSxjXwu5K+YBpxtGGlLMhfF5K/yf1csk7KnnX5ULlbB5HluyRfXJIPHJCKuSKVEmNcKLIPXkkT45xHpxn52VWmnHmPbvkG5zXDxgfj+A=</latexit>
  17. Nucleation Kinetics: Nucleation rate J(n, t) = [ P1 n=1

    1 (n,t)feq(n) ] 1 <latexit sha1_base64="llVo8TyOTb93leVUFM8jwjFS3dM=">AAACLHicdVBNSxxBFOzR+JFN1NUcvTRZAyvoMrMurnsQBC8hJwNZFXbGoaf3jTb29Izdb4SlmR/kxb8SEA9KyDW/I70fASNJQUNRVY/Xr5JCCoO+/+zNzb9ZWFxaflt7935lda2+vnFq8lJz6PNc5vo8YQakUNBHgRLOCw0sSyScJdfHY//sFrQRufqGowKijF0qkQrO0Elx/XjrS1Pt4DY9pIPQlFls1WFQXYRCpTiiYaoZt0FlwwSQTYNpbOGmaqptWkUXdjeotuJ6w2/tdXud3j515KDb7vhT4nd7NGj5EzTIDCdx/SEc5rzMQCGXzJhB4BcYWaZRcAlVLSwNFIxfs0sYOKpYBiayk2Mr+skpQ5rm2j2FdKK+nLAsM2aUJS6ZMbwyr72x+C9vUGJ6EFmhihJB8emitJQUczpujg6FBo5y5AjjWri/Un7FXEHo+q25Ev5cSv9PTtutYK8VfG03jjqzOpbJJvlImiQgXXJEPpMT0iec3JHv5Ik8e/feo/fD+zmNznmzmQ/kL3i/fgMyT6Zg</latexit> In continuum approximation: feq(n) = f1 exp[ W (n) kBT ] <latexit sha1_base64="8e9OU8VuMT+pMCYzOWaO9EeBAuo=">AAACFXicdVBNS8NAEN34bf2qevSyWAUFLUkt1h6EohePFawV2hA224ku3Wzi7kYsIX/Ci3/FiwdFvAre/DduPwQVfTDweG+GmXl+zJnStv1hjY1PTE5Nz8zm5uYXFpfyyyvnKkokhQaNeCQvfKKAMwENzTSHi1gCCX0OTb973PebNyAVi8SZ7sXghuRSsIBRoo3k5Xc2Ai+F62xLbONDHHgObmO4jVu77UASmjaNnqVd7wifZe6Gly/Yxb1KtVzdx4YcVEple0jsShU7RXuAAhqh7uXf252IJiEITTlRquXYsXZTIjWjHLJcO1EQE9oll9AyVJAQlJsOvsrwplE6OIikKaHxQP0+kZJQqV7om86Q6Cv12+uLf3mtRAcHbspEnGgQdLgoSDjWEe5HhDtMAtW8ZwihkplbMb0iJg5tgsyZEL4+xf+T81LR2Ss6p6VCrTyKYwatoXW0hRxUQTV0guqogSi6Qw/oCT1b99aj9WK9DlvHrNHMKvoB6+0TXQWdDw==</latexit> (n) = pv p 2⇡m1kBT s1n2/3 <latexit sha1_base64="jOjcUHAGUu5Nc6FLRldmRaw2I8Y=">AAACI3icdZDLSsNAFIYn3q23qks3g1XQTU3SYq0giG5cKlgVmhom00kdOpnEmROhhLyLG1/FjQtF3LjwXZxeBBX9YeDjP+dw5vxBIrgG2363xsYnJqemZ2YLc/MLi0vF5ZULHaeKsgaNRayuAqKZ4JI1gINgV4liJAoEuwy6x/365R1TmsfyHHoJa0WkI3nIKQFj+cX9DS9gQLbkNj7AXqgIzZLruzzz9K2CzPUSjiPfwV3/CJ/nOdaG5XXm7lTyDb9YssuVWr1a38UG9mpu1R6CXatjp2wPVEIjnfrFV68d0zRiEqggWjcdO4FWRhRwKlhe8FLNEkK7pMOaBiWJmG5lgxtzvGmcNg5jZZ4EPHC/T2Qk0roXBaYzInCjf9f65l+1ZgrhXivjMkmBSTpcFKYCQ4z7geE2V4yC6BkgVHHzV0xviAkKTKwFE8LXpfh/uHDLTqXsnLmlw+oojhm0htbRFnJQDR2iE3SKGoiie/SIntGL9WA9Wa/W27B1zBrNrKIfsj4+AUkQosc=</latexit> J = f1 [ R 1 1 dn (n)exp( G kBT ) ] 1 <latexit sha1_base64="eKukuOh/KNc6y3lYCVt27cteYbY=">AAACQXicdZBNixNBEIZ71q81fkU9einMCtnDhplsMJuDsKigeFphsxvIzA49nZrdJj09Q3eNGJr5a178B968e/GgiFcvdj4EFS1o+uF9q6juN6uUtBSGH4OtS5evXL22fb114+at23fad++d2LI2AseiVKWZZNyikhrHJEnhpDLIi0zhaTZ/tvRP36CxstTHtKgwKfi5lrkUnLyUtic7r+AJ5GkEMUwhlpo8nvk7p4WX4txw4Wa6cXGGxLt6F/Bt1XV7ayN+joo4vGjcPH163DS7DSRnbi9qYCdtd8Le/nA0GD0GDwfD/iBcQzgcQdQLV9VhmzpK2x/iWSnqAjUJxa2dRmFFieOGpFDYtOLaYsXFnJ/j1KPmBdrErRJo4JFXZpCXxh9NsFJ/n3C8sHZRZL6z4HRh//aW4r+8aU35QeKkrmpCLdaL8loBlbCME2bSoCC18MCFkf6tIC64z4Z86C0fwq+fwv/hpN+L9nvR637ncLCJY5s9YA9Zl0VsyA7ZS3bExkywd+wT+8K+Bu+Dz8G34Pu6dSvYzNxnf1Tw4yeLCa37</latexit> Use steepest descent to solve the integral: G(n) ⇡ G(n⇤) + 1 2 d2 G(n) dn2 |n⇤ (n n⇤)2 <latexit sha1_base64="WrbTUtGAQCPEXtIX/IvNjfrw3iI=">AAACSnicdVBNb9MwGHbKgK7jo8CRyyu6Se0QVZJVtL1NAokdN2ndJjVt9cZxNmuOE9nOtCrk93HhxI0fsQsHENoFtw1iQ9sjWXr0fMj2E2aCa+O6353ag7WHjx7X1xsbT54+e9588fJIp7mibERTkaqTEDUTXLKR4Uawk0wxTELBjsPzDwv/+IIpzVN5aOYZmyR4KnnMKRorzZq4GXxkwiDAp7bsAASYZSq9hEq14nS7A28hiBXSwisLv6x4NPX/hTplEcmpX36eFbZgI9CW7+R2Z+pvzpott7vTH/aG78GSQd/vuSvi9ofgdd0lWqTC/qz5LYhSmidMGipQ67HnZmZSoDKcClY2glyzDOk5nrKxpRITpifFcooStqwSQZwqe6SBpXqzUWCi9TwJbTJBc6b/9xbiXd44N/FgUnCZ5YZJuroozgWYFBa7QsQVo0bMLUGquH0r0DO0Qxm7fsOO8PencD858rveTtc78Fu7vWqOOnlN3pA28Uif7JI9sk9GhJIv5Ir8JL+cr84P57dzvYrWnKrzitxCbe0PH7Ku4A==</latexit> J = f1 (n⇤)Ze G⇤ kBT <latexit sha1_base64="r4RcSZYNxfIxH1WbwwNnU0IxXog=">AAACHXicdVBNaxRBEO1JTIxrEtd4zKVwIyQBl5nN4mYPQohCxFOEbBKyszv09NYkzfb0DN01wjLMH/HiX/HiQREPuYj/xt4PwYg+KHi8V0VVvThX0pLv//SWlu+trN5fe1B7uL6x+aj+eOvcZoUR2BOZysxlzC0qqbFHkhRe5gZ5Giu8iMevpv7FezRWZvqMJjkOUn6tZSIFJydF9fbOW3gJSRRAGCPxXT3c34MrwGH5PEwMF2X4GhVxOBnuV+U4OoazqtqJ6g2/edDptrsvwJHDTqvtz4nf6ULQ9GdosAVOo/ptOMpEkaImobi1/cDPaVByQ1IorGphYTHnYsyvse+o5inaQTn7roJnThlBkhlXmmCm/jlR8tTaSRq7zpTTjf3bm4r/8voFJYeDUuq8INRivigpFFAG06hgJA0KUhNHuDDS3QrihrtQyAVacyH8/hT+T85bzeCgGbxrNY7aizjW2DZ7ynZZwDrsiL1hp6zHBPvAPrEv7Kv30fvsffO+z1uXvMXME3YH3o9fK22fiQ==</latexit> Z = q | G00 (n⇤)| 2⇡kBT <latexit sha1_base64="yx76hJlrGYuhJRAxDEgoKYis0M0=">AAACHnicdVDLSgNBEJz1bXxFPXoZjOLjEHZjNOYgiAp6VDAqZmOYnczqkNnZdaZXCOt+iRd/xYsHRQRP+jdOHoKKFjQUVd10d3mR4Bps+8Pq6x8YHBoeGc2MjU9MTmWnZ050GCvKKjQUoTrziGaCS1YBDoKdRYqRwBPs1Gvutv3TG6Y0D+UxtCJWC8il5D6nBIxUz64v4HO8hV19rSBxfUVocuvuMQEE718kS0vpsrxYXblNk4Ibcdys7+DjNF2oZ3N2fq1ULpY3sCGbpULR7hK7VMZO3u4gh3o4rGff3EZI44BJoIJoXXXsCGoJUcCpYGnGjTWLCG2SS1Y1VJKA6VrSeS/Fi0ZpYD9UpiTgjvp9IiGB1q3AM50BgSv922uLf3nVGPzNWsJlFAOTtLvIjwWGELezwg2uGAXRMoRQxc2tmF4RkxGYRDMmhK9P8f/kpJB31vLOUSG3XezFMYLm0DxaRg4qoW10gA5RBVF0hx7QE3q27q1H68V67bb2Wb2ZWfQD1vsnnrig7A==</latexit> Zeldovich factor: n G <latexit sha1_base64="vEMFqaRr2AYZUz70ezEOQAsvWxQ=">AAAB8XicdVDJSgNBEO2JW4xb1KOXxkTwFGaioMeggh4jmAWTIfR0KkmTnp6hu0YIQ/7CiwdFvPo33vwbO4vg+qDpx3tVVNULYikMuu67k1lYXFpeya7m1tY3Nrfy2zt1EyWaQ41HMtLNgBmQQkENBUpoxhpYGEhoBMPzid+4A21EpG5wFIMfsr4SPcEZWum22L4AiYxeFjv5gls6diegv4lXmv5ugcxR7eTf2t2IJyEo5JIZ0/LcGP2UaRRcwjjXTgzEjA9ZH1qWKhaC8dPpxmN6YJUu7UXaPoV0qn7tSFlozCgMbGXIcGB+ehPxL6+VYO/UT4WKEwTFZ4N6iaQY0cn5tCs0cJQjSxjXwu5K+YBpxtGGlLMhfF5K/yf1csk7KnnX5ULlbB5HluyRfXJIPHJCKuSKVEmNcKLIPXkkT45xHpxn52VWmnHmPbvkG5zXDxgfj+A=</latexit> n*
  18. Condensation of Ideal Vapor Gibbs-Duhem equation: 0 = SdT Ndµ

    + V dp <latexit sha1_base64="eQxAf5i9Bk0ekKhdaODsBQ9UqOQ=">AAACAXicdVDLSsNAFJ3UV62vqBvBzWArCNKStMW0C6HgxpVU7AvaUCaTSTt08mBmIpRQN/6KGxeKuPUv3Pk3Th+Cih64cDjnXu69x4kYFdIwPrTU0vLK6lp6PbOxubW9o+/utUQYc0yaOGQh7zhIEEYD0pRUMtKJOEG+w0jbGV1M/fYt4YKGQUOOI2L7aBBQj2IkldTXD3IGPIf5G7cB8/DK7fkxPIUtN8r19axRKFnVcvUMKlKximVjTgyrCs2CMUMWLFDv6+89N8SxTwKJGRKiaxqRtBPEJcWMTDK9WJAI4REakK6iAfKJsJPZBxN4rBQXeiFXFUg4U79PJMgXYuw7qtNHcih+e1PxL68bS69iJzSIYkkCPF/kxQzKEE7jgC7lBEs2VgRhTtWtEA8RR1iq0DIqhK9P4f+kVSyYpYJ5XczWyos40uAQHIETYAIL1MAlqIMmwOAOPIAn8Kzda4/ai/Y6b01pi5l98APa2ycKjZQN</latexit> dµ = V N dp = vdp <latexit sha1_base64="FVJyc+FbgC/CwE8iuKklLGNSEsM=">AAACBXicdVDLSsNAFJ34rPUVdamLwVZwVZK2mHZRKLhxJRXsA5pQJpNJO3TyYGZSKCEbN/6KGxeKuPUf3Pk3Th+Cih64cDjnXu69x40ZFdIwPrSV1bX1jc3cVn57Z3dvXz847Igo4Zi0ccQi3nORIIyGpC2pZKQXc4ICl5GuO76c+d0J4YJG4a2cxsQJ0DCkPsVIKmmgnxQ9O0hgA9o+RzjtZOl1Br24ASdeXBzoBaNUserV+gVUpGaVq8aCGFYdmiVjjgJYojXQ320vwklAQokZEqJvGrF0UsQlxYxkeTsRJEZ4jIakr2iIAiKcdP5FBs+U4kE/4qpCCefq94kUBUJMA1d1BkiOxG9vJv7l9RPp15yUhnEiSYgXi/yEQRnBWSTQo5xgyaaKIMypuhXiEVJxSBVcXoXw9Sn8n3TKJbNSMm/KhWZ1GUcOHINTcA5MYIEmuAIt0AYY3IEH8ASetXvtUXvRXhetK9py5gj8gPb2CRO3l6Q=</latexit> dµv = kBT p dp <latexit sha1_base64="4fYAyVCYpmfzOAdvfPZCHXUBN+k=">AAACBXicdVDLSsNAFJ34rPVVdamLwVZwFZK22HYhFN24rNAXtCFMJpN26GQSZiaFErpx46+4caGIW//BnX/j9CGo6IELh3Pu5d57vJhRqSzrw1hZXVvf2MxsZbd3dvf2cweHbRklApMWjlgkuh6ShFFOWooqRrqxICj0GOl4o+uZ3xkTIWnEm2oSEydEA04DipHSkps7Kfj9MHHH8BL2A4FwOnKvmtM0nkI/Lri5vGWWKrVy7QJqUq0Uy9aCWJUatE1rjjxYouHm3vt+hJOQcIUZkrJnW7FyUiQUxYxMs/1EkhjhERqQnqYchUQ66fyLKTzTig+DSOjiCs7V7xMpCqWchJ7uDJEayt/eTPzL6yUqqDop5XGiCMeLRUHCoIrgLBLoU0GwYhNNEBZU3wrxEOkwlA4uq0P4+hT+T9pF0y6Z9m0xXy8v48iAY3AKzoENKqAObkADtAAGd+ABPIFn4954NF6M10XrirGcOQI/YLx9Ap/Gl/4=</latexit> µl(pv) µl(psat) = vl(pv psat) <latexit sha1_base64="gdA8ZWhZIrjLigwRvaeUtfBA+Ik=">AAACG3icdVDLSgMxFM3UV62vUZdugq3QLlpmpsW2C6HgxmUF+4C2DJk0bUOTmSHJFMrQ/3Djr7hxoYgrwYV/Y/oCFT1w4eSce8m9xwsZlcqyPo3ExubW9k5yN7W3f3B4ZB6fNGUQCUwaOGCBaHtIEkZ90lBUMdIOBUHcY6Tlja/nfmtChKSBf6emIelxNPTpgGKktOSaTqbLI5dlQ3eSg3m4fsQSqVkOXsGJy+DchPm1mHHNtFUolqul6iXUpFJ2StaSWOUqtAvWAmmwQt0137v9AEec+AozJGXHtkLVi5FQFDMyS3UjSUKEx2hIOpr6iBPZixe3zeCFVvpwEAhdvoIL9ftEjLiUU+7pTo7USP725uJfXidSg0ovpn4YKeLj5UeDiEEVwHlQsE8FwYpNNUFYUL0rxCMkEFY6zpQOYX0p/J80nYJdLNi3TrpWWsWRBGfgHGSBDcqgBm5AHTQABvfgETyDF+PBeDJejbdla8JYzZyCHzA+vgD4S59/</latexit> µv(psat) = µl(psat) <latexit sha1_base64="iXVCz3e7VA1KDb0kEoTl1QtLEDs=">AAACCnicdZDLSsNAFIYn9VbrLerSzWgr1E1J2mLahVBw47KCvUAbwmQ6aYdOLsxMCiV07cZXceNCEbc+gTvfxklbRUV/GPj5zjmcOb8bMSqkYbxrmZXVtfWN7GZua3tnd0/fP2iLMOaYtHDIQt51kSCMBqQlqWSkG3GCfJeRjju+TOudCeGChsGNnEbE9tEwoB7FSCrk6MeFvh87k2LkJALJ2Rm8gClgX6Dg6HmjVLHq1fo5VKZmlavGwhhWHZolY648WKrp6G/9QYhjnwQSMyREzzQiaSeIS4oZmeX6sSARwmM0JD1lA+QTYSfzU2bwVJEB9EKuXiDhnH6fSJAvxNR3VaeP5Ej8rqXwr1ovll7NTmgQxZIEeLHIixmUIUxzgQPKCZZsqgzCnKq/QjxCHGGp0supED4vhf+bdrlkVkrmdTnfqC7jyIIjcAKKwAQWaIAr0AQtgMEtuAeP4Em70x60Z+1l0ZrRljOH4Ie01w8ulZnp</latexit> µv(pv) µv(psat) = kBT ln pv psat <latexit sha1_base64="N7vi4slcxqIk1a/VE+xhh+L5rnI=">AAACJHicdVBLSwMxGMz6tr6qHr0EW6E9WHZrcS0iiF48KvQF3WXJplkNzWaXJFsoy/4YL/4VLx584MGLv8X0BSo6EJjMzEfyjR8zKpVpfhhz8wuLS8srq7m19Y3Nrfz2TktGicCkiSMWiY6PJGGUk6aiipFOLAgKfUbafv9y5LcHREga8YYaxsQN0S2nAcVIacnLnxadMPEGpdgblOEhnF1SiVRWhmew7100oMO4EwiEU53K0qmbFb18wawc2fVa/RhqcmJXa+aEmHYdWhVzjAKY4trLvzq9CCch4QozJGXXMmPlpkgoihnJck4iSYxwH92SrqYchUS66XjJDB5opQeDSOjDFRyr3ydSFEo5DH2dDJG6k7+9kfiX101UcOKmlMeJIhxPHgoSBlUER43BHhUEKzbUBGFB9V8hvkO6DqV7zekSZpvC/0mrWrGOKtZNtXBem9axAvbAPigBC9jgHFyBa9AEGNyDR/AMXowH48l4M94n0TljOrMLfsD4/AIcWaSM</latexit> µv(pv) µl(pv) = vl(pv psat) kBT ln Sp <latexit sha1_base64="Nxh/XBZPExOy2PAIbqh3GfEaOsA=">AAACJnicdVDLSgMxFM3UV62vqks3wSrowjJTi7WLgujGpaK1hU4ZMmnahmYyIckMlKFf48ZfceNCEXHnp5jpVFDRA4Fzz7mXm3t8wajStv1u5ebmFxaX8suFldW19Y3i5tadCiOJSROHLJRtHynCKCdNTTUjbSEJCnxGWv7oIvVbMZGKhvxWjwXpBmjAaZ9ipI3kFRt7bhB58YHw4kN4BNOCZUUDxhk1svAShfQk7Rh557fQZRzeeGLPK5bs8nGtXq2fQENOa5WqnRG7VodO2Z6iBGa48orPbi/EUUC4xgwp1XFsobsJkppiRiYFN1JEIDxCA9IxlKOAqG4yPXMC943Sg/1Qmsc1nKrfJxIUKDUOfNMZID1Uv71U/MvrRLp/2k0oF5EmHGeL+hGDOoRpZrBHJcGajQ1BWFLzV4iHSCKsTbIFE8LXpfB/clcpO8dl57pSOqvO4siDHbALDoADauAMXIIr0AQY3INH8AxerAfryXq13rLWnDWb2QY/YH18AkoNopI=</latexit> µ ⇡ kBT ln Sp <latexit sha1_base64="+Ra9F0MjBuwbbFIaLimryqAYEeE=">AAACCnicdVDLTgIxFO3gC/E16tJNFUxckRkgAjuiLlxi5JUwZNIpBRo6nabtGAlh7cZfceNCY9z6Be78G8vDRI2e5CYn59ybe+8JBKNKO86HlVhaXlldS66nNja3tnfs3b2GimKJSR1HLJKtACnCKCd1TTUjLSEJCgNGmsHwfOo3b4hUNOI1PRKkE6I+pz2KkTaSbx9mvAvCNIJeGEMPCSGjWzj0z2rQYxxe+yLj22knmy+WC+VTaEipmCs4c+IUy9DNOjOkwQJV3373uhGOQ8I1ZkiptusI3RkjqSlmZJLyYkUEwkPUJ21DOQqJ6oxnr0zgsVG6sBdJU1zDmfp9YoxCpUZhYDpDpAfqtzcV//Lase6VOmPKRawJx/NFvZhBHcFpLrBLJcGajQxBWFJzK8QDJBHWJr2UCeHrU/g/aeSybj7rXuXSlcIijiQ4AEfgBLigCCrgElRBHWBwBx7AE3i27q1H68V6nbcmrMXMPvgB6+0TWr+ZYg==</latexit> G⇤ = 16⇡ 3 v2 l 3 (kBT ln Sp)2 <latexit sha1_base64="GaI71AC/1cYJBMsqHF88JtQ8QNI=">AAACMXicdVBNSyNBEO1Rd1ez627Uo5fGuOB6CDOTYMxBEBX0qKxRIZMMNZ2e2KS7Z+juEcIwf8mL/0S8eFDEq3/CzseCivug4PV7VXTVi1LOtHHde2dmdu7L12/zC6XvPxZ//iovLZ/pJFOEtkjCE3URgaacSdoyzHB6kSoKIuL0PBrsj/zzK6o0S+SpGaa0I6AvWcwIGCuF5aP14IByA/iwm28WGO/gIFZAcm8rSFmR14rp+yrkXT/ogxDQrRX5xiDcw6cBl/hvmP7p+sV6WK641VqjWW9uYUu2G37dnRC30cRe1R2jgqY4Dsu3QS8hmaDSEA5atz03NZ0clGGE06IUZJqmQAbQp21LJQiqO/n44gL/tkoPx4myJQ0eq28nchBaD0VkOwWYS/3RG4mfee3MxNudnMk0M1SSyUdxxrFJ8Cg+3GOKEsOHlgBRzO6KySXYhIwNuWRD+Hcp/j8586tereqd+JXd+jSOebSK1tAG8lAD7aIjdIxaiKBrdIce0KNz49w7T87zpHXGmc6soHdwXl4B6KGoOQ==</latexit> n⇤ = 32⇡ 3 v2 l 3 (kBT ln Sp)3 <latexit sha1_base64="tbK92SLIGkvZm0QACAMrVAWfa48=">AAACL3icdVBdSxtBFJ21ttW0trE++jIYC9aHsB/BmIeCqIiPSo0K2WS5O5mNQ2Zml5lZISz7j/riX/FFRBFf/RdOPgoq9sCFM+fcy9x74owzbVz31pn7MP/x0+eFxcqXr0vfvleXf5zqNFeEtknKU3Ueg6acSdo2zHB6nikKIub0LB7ujf2zS6o0S+WJGWW0K2AgWcIIGCtF1YN12Ss2S/wbh4kCUgR+mLGyCMrZ+zLiPT8cgBDQC8oi3KfcAN4YRrsnIZf4T5T9svp6VK259aDZarS2sCXbTb/hTonbbGGv7k5QQzMcRdXrsJ+SXFBpCAetO56bmW4ByjDCaVkJc00zIEMY0I6lEgTV3WJyb4l/WqWPk1TZkgZP1JcTBQitRyK2nQLMhX7rjcX3vE5uku1uwWSWGyrJ9KMk59ikeBwe7jNFieEjS4AoZnfF5AJsTsZGXLEh/LsU/5+c+nUvqHvHfm2nMYtjAa2iNbSBPNREO+gQHaE2IugvukZ36N65cm6cB+dx2jrnzGZW0Cs4T89k4KgL</latexit> J = vl( p kBT )2 q 2 ⇡m exp( 16⇡ 3kBT v2 i 3 (kBT ln Sp)2 ) <latexit sha1_base64="MgudzJgktszKBaYFFX5p2PINgoY=">AAACYnicdVFBb9MwGHUCg63A1rHjOFh0SN2BKkmrdT1MmuCCOA3RbpOaNnJcp7NqO8Z2qlWW/yQ3Tlz2Q+Y2RQIEn2Tp6b3vfZ/9nEtGtYmiH0H45OnOs+e7e40XL1/tHzQPX1/rslKYjHDJSnWbI00YFWRkqGHkViqCeM7ITb74uNZvlkRpWoqhWUky4WguaEExMp7KmquTz/ACLjMG22mhELbS2UX2YehOpwlM9TdlbM0n6RxxjpxNJYXcOUjuZft9rcVnnnS2641w6GpumdHp1jPtOtteD02ZgF8z6Ue705Os2Yo63f6gNziDHpz3k15Ug6g/gHEn2lQLbOsqa35PZyWuOBEGM6T1OI6kmVikDMWMuEZaaSIRXqA5GXsoECd6YjcROfjOMzNYlMofYeCG/d1hEdd6xXPfyZG5039ra/Jf2rgyxfnEUiErQwSuFxUVg6aE67zhjCqCDVt5gLCi/q4Q3yGfkPG/0vAh/Hop/D+4TjpxtxN/SVqXvW0cu+AYvAVtEIM+uASfwBUYAQx+BjvBfnAQPISN8DA8qlvDYOs5An9U+OYRI/e1wg==</latexit> Vapor as ideal gas: Incompressible liquid: At coexistence: Nucleation rate: