Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Coding Agentを用いた仕様駆動開発を試す中で考えたこれからのエンジニアに重要な能力
Search
To Kawa
September 22, 2025
Programming
0
36
Coding Agentを用いた仕様駆動開発を試す中で考えたこれからのエンジニアに重要な能力
To Kawa
September 22, 2025
Tweet
Share
More Decks by To Kawa
See All by To Kawa
NotebookLMが変えるエンジニアの情報整理術
waytkheming
0
120
GoとKubernetesを用いたバッチ開発のすすめ
waytkheming
2
2.3k
gRPC入門
waytkheming
0
130
Other Decks in Programming
See All in Programming
三者三様 宣言的UI
kkagurazaka
0
320
Register is more than clipboard
satorunooshie
1
180
iOSでSVG画像を扱う
kishikawakatsumi
0
180
Blazing Fast UI Development with Compose Hot Reload (droidcon London 2025)
zsmb
0
430
3年ぶりにコードを書いた元CTOが Claude Codeと30分でMVPを作った話
maikokojima
0
710
AI 駆動開発におけるコミュニティと AWS CDK の価値
konokenj
5
300
スキーマ駆動で、Zod OpenAPI Honoによる、API開発するために、Hono Takibiというライブラリを作っている
nakita628
0
330
AkarengaLT vol.38
hashimoto_kei
1
130
Module Proxyのマニアックな話 / Niche Topics in Module Proxy
kuro_kurorrr
0
200
マンガアプリViewerの大画面対応を考える
kk__777
0
430
Software Architecture
hschwentner
6
2.4k
理論と実務のギャップを超える
eycjur
0
210
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Facilitating Awesome Meetings
lara
57
6.6k
Being A Developer After 40
akosma
91
590k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Automating Front-end Workflow
addyosmani
1371
200k
Done Done
chrislema
186
16k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
650
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Practical Orchestrator
shlominoach
190
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Transcript
Coding Agentを用いた仕様駆動開発を試す中で考えた これからのエンジニアに重要な能力 1
自己紹介 goro フリマアプリ運営企業のグループで暗号資産交換所を運営している会社でバックエンドエンジニアをして います 昨年、前橋市に移住してきました 趣味:旅行、ドライブ、筋トレ、プロ野球観戦、畑 2
Coding Agent 仕様・コードの文脈を理解し、設計・実装・テストを補助するソフトウェア開発支援 のAI。 例:Claude Code、Codex、GitHub Copilotなど 2025年現在、多くのコーディングエージェントが登場し、実際の開発現場で使うエン ジニアが急増中 3
詳細な仕様を詳しく書いてそれをCoding Agentに投げ れば、全部任せられる? 4
Coding Agentを使う前の私の期待 仕様書を渡すだけで、あっという間に開発完了 既存コードを自動で参考にしてくれる ベストプラクティスを考慮した設計で実装してくれる つまり「コーディングは「お任せ」でOKなのでは」 5
実際に試してみた MCP + Codig Agent(Claude Code)で実験 MCPで仕様書を取得 不明な点を洗い出して → Codig
Agentに質問 回答をもとに仕様を補完・可能な限り詳細化 初期コードを生成 その後は生成 → テスト → リファクタのサイクル 6
結果はどうだった? AIは仕様通りの動作するコードを素早く生成してくれる(ミスはちょいちょいある) でも、特に気になったのが生成されたコード ≠ 良いコード 良いコード = 読みやすく、保守しやすく、設計がしっかりしている 結果として、多くのコードをリファクタリングする必要があった トータル開発時間は思ったほど短縮されなかった
7
生成されたコードの問題点 AI生成コードの76%はリファクタリングが必要(State of AI 2025) 45%に脆弱性が含まれている(Veracode の 2025 GenAI Code
Security Report) 読みづらいコード if/else文が大量に並ぶ 同じような処理が重複している 責任の分離ができていない 実装の抽象化がされていない素直な実装が多い 8
なぜAIは「良いコード」を書けないのか? 仕様書には忠実だが大きいコードベースだとコンテキストが大きいため、全体最 適を考えない 「動けばOK」という発想で、 「長く使える」 「読みやすい」を考えない 動作することにインセンティブがある設計になっている? ドメイン知識や暗黙のルールが分からない 保守性やセキュリティを軽視しがち 9
仕様駆動開発の改善のアプローチ GitHubのSpec Kitを参考 仕様→開発計画→タスク作成→実装を可能な限り明文化 Specを可能な限り詳しく明文化していく: 背景/目的, I/O, 例外, 境界 ルール明文化
チェックリストで非機能を先出し(SLO/Timeout/Retry/観測性/権限) エラー分類(再試行可/致命/ユーザ起因)とハンドリング方針の明文化 これで出力は比較的安定するようになった ただここまでエンジニアの手を加えるとなると最終的なコードの品質はエンジニ アの能力で決まるのでは? 10
AIが当たり前の時代にエンジニアがこれから必要にな る能力は何? AIでコード生成コストが下がる → コード量が増える → 複雑性が肥大化するリスク 抽象化して考える力 レイヤー分離 条件分岐をパターンで整理
アーキテクチャ全体を見る力 依存関係の向きを整える AIに書いてもらっても、人が理解しメンテナンスできるコードをキープする必要が ある 11
まとめ AIは実装を任せられる エンジニアは抽象化・設計・品質を担当する ここが差になる 複雑なシステムを作る時、AIを使ったとしてもエンジニアの能力を超えるものを作るの は困難。一時的には動くものを作れるが、長期的には問題が表面化するのでは AIが当たり前の時代になっても勉強することはたくさんありそう AIが実装の速度を出す / 人がそのクオリティを担保する
/ エンジニアより抽象化し た思考を持つことが価値になるのでは 12
ご清聴ありがとうございました! 13