Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Performance Stability of Public Clouds
Search
xLeitix
April 03, 2019
Research
1
74
Performance Stability of Public Clouds
Talk given at VECS (automotive industry conference in Gothenburg)
xLeitix
April 03, 2019
Tweet
Share
More Decks by xLeitix
See All by xLeitix
Presentation WASP Software Technology Cluster 2025
xleitix
0
110
2024_uzh_collo.pdf
xleitix
0
35
CrossFit: Fine-Grained Benchmarking of Serverless Application Performance Across Cloud Providers
xleitix
0
250
Unit testing performance using code microbenchmarks - how far are we?
xleitix
0
400
Developer-Targeted Performance Engineering (ZHAW Colloquium)
xleitix
0
77
Developer-Targeted Performance Engineering
xleitix
0
220
Cachematic – Automatic Invalidation in Application-Level Caching Systems
xleitix
0
120
AWS Lambda and #serverless. What’s all the fuzz about?
xleitix
1
610
Performance Testing in a Public Cloud - How bad is it really?
xleitix
0
440
Other Decks in Research
See All in Research
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
280
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
970
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
300
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
33k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
760
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
800
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
670
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
220
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
380
20250725-bet-ai-day
cipepser
2
510
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
270
アニメにおける宇宙猫ミームとその表現
yttrium173340
0
110
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Practical Orchestrator
shlominoach
190
11k
Building Applications with DynamoDB
mza
96
6.7k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
650
Docker and Python
trallard
46
3.6k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
How to train your dragon (web standard)
notwaldorf
97
6.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Transcript
Performance Stability of (Public) Clouds Philipp Leitner
[email protected]
@xLeitix
Chalmers !2 Cloud Computing Image Credit: https://www.networkworld.com/article/3195527/did-cloud-kill-backup.html
Chalmers !3 Some disclaimers before we get started …. Image
Credit: https://thenounproject.com/term/exclamation-mark/
Chalmers !4 Image Credit: https://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
Chalmers !5 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !6 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !7 (One) Challenge for Cloud Adoption in Automotive: Predictability
Image Credit: http://chittagongit.com
Chalmers !8 Predictability Do I know what I will get?
Do I get the same thing every time? Image Credit: http://chittagongit.com
Chalmers !9 Aside: Cloud Instance Types (“flavors”) Image Credit (Rightscale):
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
Chalmers !10 Predictability Inter-Instance Intra-Instance
Chalmers !11 Predictability Inter-Instance Intra-Instance
Chalmers !12 Predictability Inter-Instance Intra-Instance
Chalmers !13 Source (Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !14 Relative Standard Deviations Benchmarks of identical instances Source
(Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf (anno ~ 2015)
Chalmers !15 Recent Results (unpublished data) (Feb 2019) 2015
Chalmers !16 Instance Runtime (unpublished data) (Feb 2019) 2015 3.5
4.0 4.5 5.0 5.5 0 20 40 60 Benchmark Runtime [h] Benchmark Value Continuous io azure D2s
Chalmers !17 Changes Over the Years (mean of all measurements)
Chalmers !18 2015 2019 CPU 8.1 3.6 - 55% Changes
Over the Years (mean of all measurements)
Chalmers !19 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% Changes Over the Years (mean of all measurements)
Chalmers !20 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% IO 38.6 15.9 - 59% Changes Over the Years (mean of all measurements)
Chalmers !21 What has changed?
Chalmers !22 For IO: multi-tenancy For CPU: hardware heterogeneity Traditional
Reasons for Lack of Predictability
Chalmers !23 Reason 0: More commitment to predictable performance levels
and transparency
Chalmers !24 Reason 1: Move towards guaranteed hardware
Chalmers !25 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !26 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (now) (Largely) guaranteed hardware
Chalmers !27 Reason 2: Move towards SLAs and credit systems
over best-effort delivery
Chalmers !28 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !29 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (unpublished data) (now) 0 5 10 15 20 25 0 50 100 150 200 Benchmark Runtime [h] Benchmark Value c5−large / IO
Chalmers !30 Credit Models - General Idea Resources are distributed
fairly between tenants based on usage tokens Available for: CPU (in case of shared CPU instance types) IO (some providers)
Chalmers !31 Credit Models at Runtime Source (Leitner and Scheuner):
https://www.zora.uzh.ch/id/eprint/112940/
Chalmers !32 Summary Public clouds are not all that unpredictable
(anymore)
Chalmers !33 Summary Public clouds are not all that unpredictable
(anymore) … useful even for workloads sensitive to performance variation … but it’s still virtualized infrastructure
Chalmers !34 Summary Public clouds are not all that unpredictable
(anymore) New developments have changed the game: Specialized hardware, credit models, provisioned IOPS
Chalmers !35 Cloud Workbench Tool for scheduling cloud experiments Code:
https://github.com/sealuzh/cloud-workbench Demo: https://www.youtube.com/watch? v=0yGFGvHvobk
Chalmers !36 Questions? Source: https://dilbert.com/strip/2008-05-08