$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Performance Stability of Public Clouds
Search
xLeitix
April 03, 2019
Research
1
75
Performance Stability of Public Clouds
Talk given at VECS (automotive industry conference in Gothenburg)
xLeitix
April 03, 2019
Tweet
Share
More Decks by xLeitix
See All by xLeitix
Presentation WASP Software Technology Cluster 2025
xleitix
0
130
2024_uzh_collo.pdf
xleitix
0
39
CrossFit: Fine-Grained Benchmarking of Serverless Application Performance Across Cloud Providers
xleitix
0
260
Unit testing performance using code microbenchmarks - how far are we?
xleitix
0
400
Developer-Targeted Performance Engineering (ZHAW Colloquium)
xleitix
0
79
Developer-Targeted Performance Engineering
xleitix
0
220
Cachematic – Automatic Invalidation in Application-Level Caching Systems
xleitix
0
120
AWS Lambda and #serverless. What’s all the fuzz about?
xleitix
1
610
Performance Testing in a Public Cloud - How bad is it really?
xleitix
0
440
Other Decks in Research
See All in Research
Language Models Are Implicitly Continuous
eumesy
PRO
0
350
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
490
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
110
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
360
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
110
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
690
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
480
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
300
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
220
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
490
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Invisible Side of Design
smashingmag
302
51k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
The Pragmatic Product Professional
lauravandoore
37
7.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Six Lessons from altMBA
skipperchong
29
4.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Writing Fast Ruby
sferik
630
62k
Visualization
eitanlees
150
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Transcript
Performance Stability of (Public) Clouds Philipp Leitner
[email protected]
@xLeitix
Chalmers !2 Cloud Computing Image Credit: https://www.networkworld.com/article/3195527/did-cloud-kill-backup.html
Chalmers !3 Some disclaimers before we get started …. Image
Credit: https://thenounproject.com/term/exclamation-mark/
Chalmers !4 Image Credit: https://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
Chalmers !5 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !6 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !7 (One) Challenge for Cloud Adoption in Automotive: Predictability
Image Credit: http://chittagongit.com
Chalmers !8 Predictability Do I know what I will get?
Do I get the same thing every time? Image Credit: http://chittagongit.com
Chalmers !9 Aside: Cloud Instance Types (“flavors”) Image Credit (Rightscale):
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
Chalmers !10 Predictability Inter-Instance Intra-Instance
Chalmers !11 Predictability Inter-Instance Intra-Instance
Chalmers !12 Predictability Inter-Instance Intra-Instance
Chalmers !13 Source (Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !14 Relative Standard Deviations Benchmarks of identical instances Source
(Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf (anno ~ 2015)
Chalmers !15 Recent Results (unpublished data) (Feb 2019) 2015
Chalmers !16 Instance Runtime (unpublished data) (Feb 2019) 2015 3.5
4.0 4.5 5.0 5.5 0 20 40 60 Benchmark Runtime [h] Benchmark Value Continuous io azure D2s
Chalmers !17 Changes Over the Years (mean of all measurements)
Chalmers !18 2015 2019 CPU 8.1 3.6 - 55% Changes
Over the Years (mean of all measurements)
Chalmers !19 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% Changes Over the Years (mean of all measurements)
Chalmers !20 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% IO 38.6 15.9 - 59% Changes Over the Years (mean of all measurements)
Chalmers !21 What has changed?
Chalmers !22 For IO: multi-tenancy For CPU: hardware heterogeneity Traditional
Reasons for Lack of Predictability
Chalmers !23 Reason 0: More commitment to predictable performance levels
and transparency
Chalmers !24 Reason 1: Move towards guaranteed hardware
Chalmers !25 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !26 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (now) (Largely) guaranteed hardware
Chalmers !27 Reason 2: Move towards SLAs and credit systems
over best-effort delivery
Chalmers !28 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !29 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (unpublished data) (now) 0 5 10 15 20 25 0 50 100 150 200 Benchmark Runtime [h] Benchmark Value c5−large / IO
Chalmers !30 Credit Models - General Idea Resources are distributed
fairly between tenants based on usage tokens Available for: CPU (in case of shared CPU instance types) IO (some providers)
Chalmers !31 Credit Models at Runtime Source (Leitner and Scheuner):
https://www.zora.uzh.ch/id/eprint/112940/
Chalmers !32 Summary Public clouds are not all that unpredictable
(anymore)
Chalmers !33 Summary Public clouds are not all that unpredictable
(anymore) … useful even for workloads sensitive to performance variation … but it’s still virtualized infrastructure
Chalmers !34 Summary Public clouds are not all that unpredictable
(anymore) New developments have changed the game: Specialized hardware, credit models, provisioned IOPS
Chalmers !35 Cloud Workbench Tool for scheduling cloud experiments Code:
https://github.com/sealuzh/cloud-workbench Demo: https://www.youtube.com/watch? v=0yGFGvHvobk
Chalmers !36 Questions? Source: https://dilbert.com/strip/2008-05-08