Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Performance Stability of Public Clouds
Search
xLeitix
April 03, 2019
Research
1
75
Performance Stability of Public Clouds
Talk given at VECS (automotive industry conference in Gothenburg)
xLeitix
April 03, 2019
Tweet
Share
More Decks by xLeitix
See All by xLeitix
Presentation WASP Software Technology Cluster 2025
xleitix
0
130
2024_uzh_collo.pdf
xleitix
0
40
CrossFit: Fine-Grained Benchmarking of Serverless Application Performance Across Cloud Providers
xleitix
0
260
Unit testing performance using code microbenchmarks - how far are we?
xleitix
0
400
Developer-Targeted Performance Engineering (ZHAW Colloquium)
xleitix
0
79
Developer-Targeted Performance Engineering
xleitix
0
230
Cachematic – Automatic Invalidation in Application-Level Caching Systems
xleitix
0
120
AWS Lambda and #serverless. What’s all the fuzz about?
xleitix
1
610
Performance Testing in a Public Cloud - How bad is it really?
xleitix
0
440
Other Decks in Research
See All in Research
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
500
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
210
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.5k
投資戦略202508
pw
0
580
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
130
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
120
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
460
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
Featured
See All Featured
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
25
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Music & Morning Musume
bryan
46
7k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
BBQ
matthewcrist
89
9.9k
Raft: Consensus for Rubyists
vanstee
141
7.2k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
YesSQL, Process and Tooling at Scale
rocio
174
15k
How to build a perfect <img>
jonoalderson
0
4.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
Performance Stability of (Public) Clouds Philipp Leitner
[email protected]
@xLeitix
Chalmers !2 Cloud Computing Image Credit: https://www.networkworld.com/article/3195527/did-cloud-kill-backup.html
Chalmers !3 Some disclaimers before we get started …. Image
Credit: https://thenounproject.com/term/exclamation-mark/
Chalmers !4 Image Credit: https://nordicapis.com/living-in-the-cloud-stack-understanding-saas-paas-and-iaas-apis/
Chalmers !5 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !6 Cloud Usage in Automotive Source (Accenture): https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/ Industries_18/Accenture-Cloud-Automative-PoV.pdf
Chalmers !7 (One) Challenge for Cloud Adoption in Automotive: Predictability
Image Credit: http://chittagongit.com
Chalmers !8 Predictability Do I know what I will get?
Do I get the same thing every time? Image Credit: http://chittagongit.com
Chalmers !9 Aside: Cloud Instance Types (“flavors”) Image Credit (Rightscale):
https://www.rightscale.com/about-cloud-management/cloud-cost-optimization/cloud-pricing-comparison
Chalmers !10 Predictability Inter-Instance Intra-Instance
Chalmers !11 Predictability Inter-Instance Intra-Instance
Chalmers !12 Predictability Inter-Instance Intra-Instance
Chalmers !13 Source (Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !14 Relative Standard Deviations Benchmarks of identical instances Source
(Leitner and Cito): https://arxiv.org/pdf/1411.2429.pdf (anno ~ 2015)
Chalmers !15 Recent Results (unpublished data) (Feb 2019) 2015
Chalmers !16 Instance Runtime (unpublished data) (Feb 2019) 2015 3.5
4.0 4.5 5.0 5.5 0 20 40 60 Benchmark Runtime [h] Benchmark Value Continuous io azure D2s
Chalmers !17 Changes Over the Years (mean of all measurements)
Chalmers !18 2015 2019 CPU 8.1 3.6 - 55% Changes
Over the Years (mean of all measurements)
Chalmers !19 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% Changes Over the Years (mean of all measurements)
Chalmers !20 2015 2019 CPU 8.1 3.6 - 55% MEM
12.6 6.5 - 48% IO 38.6 15.9 - 59% Changes Over the Years (mean of all measurements)
Chalmers !21 What has changed?
Chalmers !22 For IO: multi-tenancy For CPU: hardware heterogeneity Traditional
Reasons for Lack of Predictability
Chalmers !23 Reason 0: More commitment to predictable performance levels
and transparency
Chalmers !24 Reason 1: Move towards guaranteed hardware
Chalmers !25 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !26 (anno ~ 2015) Heterogenous Hardware? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (now) (Largely) guaranteed hardware
Chalmers !27 Reason 2: Move towards SLAs and credit systems
over best-effort delivery
Chalmers !28 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf
Chalmers !29 (anno ~ 2015) Best-Effort Delivery? Source (Leitner and
Cito): https://arxiv.org/pdf/1411.2429.pdf (unpublished data) (now) 0 5 10 15 20 25 0 50 100 150 200 Benchmark Runtime [h] Benchmark Value c5−large / IO
Chalmers !30 Credit Models - General Idea Resources are distributed
fairly between tenants based on usage tokens Available for: CPU (in case of shared CPU instance types) IO (some providers)
Chalmers !31 Credit Models at Runtime Source (Leitner and Scheuner):
https://www.zora.uzh.ch/id/eprint/112940/
Chalmers !32 Summary Public clouds are not all that unpredictable
(anymore)
Chalmers !33 Summary Public clouds are not all that unpredictable
(anymore) … useful even for workloads sensitive to performance variation … but it’s still virtualized infrastructure
Chalmers !34 Summary Public clouds are not all that unpredictable
(anymore) New developments have changed the game: Specialized hardware, credit models, provisioned IOPS
Chalmers !35 Cloud Workbench Tool for scheduling cloud experiments Code:
https://github.com/sealuzh/cloud-workbench Demo: https://www.youtube.com/watch? v=0yGFGvHvobk
Chalmers !36 Questions? Source: https://dilbert.com/strip/2008-05-08