Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optunaによる多目的最適化
Search
Yoshihiko Ozaki
June 29, 2021
Research
5
3.6k
Optunaによる多目的最適化
Optuna Meetup #1 での発表資料です。
Yoshihiko Ozaki
June 29, 2021
Tweet
Share
Other Decks in Research
See All in Research
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
2
1.4k
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
150
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
100
Submeter-level land cover mapping of Japan
satai
3
250
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
340
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.6k
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
910
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.6k
経済学と機械学習:因果推論と密度比推定を中心に
masakat0
0
140
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
230
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
BBQ
matthewcrist
89
9.8k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Practical Orchestrator
shlominoach
190
11k
We Have a Design System, Now What?
morganepeng
53
7.8k
Building Adaptive Systems
keathley
43
2.7k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
The Language of Interfaces
destraynor
160
25k
How STYLIGHT went responsive
nonsquared
100
5.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
OptunaʹΑΔଟత࠷దԽ Optuna Meetup #1 2021/06/26 ඌ࡚ Յ 1
ඌ࡚ Յ • ॴଐ • άϦʔגࣜձࣾʗ࢈ۀٕज़૯߹ݚڀॴਓೳηϯλʔ • ࠷ۙͷݚڀ • Ozaki,
Y., Tanigaki, Y., Watanabe, S., & Onishi, M. (2020). Multiobjective tree-structured parzen estimator for computationally expensive optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 533-541). • Ozaki, Y., Suzuki, Y., Hawai, T., Saito, K., Onishi, M., & Ono, K. (2020). Automated crystal structure analysis based on blackbox optimisation. npj Computational Materials, 6(1), 1-7. • ඌ࡚Յ, ଜক, & େਖ਼ً. (2020). ػցֶशʹ͓͚ΔϋΠύύϥϝʔλ࠷దԽख๏: ֓ཁͱಛ . ిࢠใ௨৴ֶձจࢽ D, 103(9), 615-631. 2
࣍ • ͡Ίʹɿଟత࠷దԽ • Optunaɿଟత࠷దԽख๏ • Optunaɿଟత࠷దԽؔ࿈ػೳ • ·ͱΊ 3
͡Ίʹɿଟత࠷దԽ 4
ଟత࠷దԽ • త࠷దԽ • ಉ࣌ʹ࠷దԽ͞ΕΔ ݸͷత͕ؔଘࡏ͢Δ • ྫɿాۭߓ 㱺 ϑϥϯΫϑϧτؒͷҠಈϓϥϯ
• ✔ Ҡಈ࣌ؒͷ࠷খԽ 㱻 ✔ අ༻ͷ࠷খԽʢ2ͭͷతτϨʔυΦϑͷؔʣ m m 5
ଟత࠷దԽ • త࠷దԽ • ಉ࣌ʹ࠷దԽ͞ΕΔ ݸͷత͕ؔଘࡏ͢Δ m m తۭؒ (f1
(x), f2 (x)) ୈ2తɿf2 (x) ୈ1తɿf1 (x) 2త࠷খԽ Minimize/Maximize subject to ɿ ൪ͷతؔ ɿܾఆม ɿ࣮ߦՄೳྖҬ f1 (x), f2 (x), …, fm (x) x ∈ X fi (x) i x X ୳ࡧۭؒ X x1 x2 ࣸ૾ 6
ଟత࠷దԽ • ଟత࠷దԽͰɼ୯Ұͷ࠷దղҰൠʹଘࡏ͠ͳ͍ • ଞͷҙͷղʹ༏ӽ͞Εͳ͍શͯͷղͷू߹ΛύϨʔτηοτͱݺͼ ύϨʔτηοτͷతۭؒͰͷ૾ΛύϨʔτϑϩϯτͱݺͿ ύϨʔτϑϩϯτ ྉۚ Ҡಈ࣌ؒ 2తʢҠಈ࣌ؒɼྉۚʣ࠷খԽ
༏ӽؔ • ABΛ༏ӽ͢Δ • AͱCൺֱෆՄೳͷؔ ଟత࠷దԽΛղ͘ͱύϨʔτηοτ ΛٻΊΔʢۙࣅ͢Δʣ͜ͱ 7
Optunaɿଟత࠷దԽख๏ 8
Optunaͱଟత࠷దԽɿػցֶशʹ͓͚ΔԠ༻ • λεΫ • Hyperparameter Optimization • Neural Architecture Search
• తؔ • Ϟσϧਫ਼ • ϞσϧαΠζʢɼফඅిྗʣ https://arxiv.org/abs/2105.01015 9
ଟత࠷దԽख๏ • ݱࡏOptunaͰར༻Մೳͳख๏ • ਐԽܕଟత࠷దԽɿNSGA-II • ଟతϕΠζ࠷దԽɿMOTPEɼqEHVI (integration.botorch) 10
ਐԽܕଟత࠷దԽ • ਐԽܭࢉΛ༻͍Δ͜ͱͰɼύϨʔτϑϩϯτΛۙࣅ͢Δղू߹ΛҰ ͷ࣮ߦͰಉ࣌ʹ֫ಘ͢Δ͜ͱΛతͱͨ͠ख๏ 11
• ղͷ༏ྼΛɼඇ༏ӽϥϯΫʹجͮ͘ऩଋੑɼࠞࡶڑʹجͮ͘ଟ༷ੑ ͷ؍͔Βܾఆ͠ɼ༏ΕͨղΛݩʹ࣍ੈͷݸମΛੜ NSGA-II (Deb et al., 2002) ඇ༏ӽϥϯΫɿ༏ӽ͞Ε͍ͯͳ͍ղΛRank 1ͱͯͦ͜͠
͔Βॱʹऩଋੑʢ༏ӽؔʣʹԠͯ͡ϥϯΫ͕ܾ·Δ ࠞࡶڑɿྡΓ߹͏ݸମؒͷϚϯϋολϯڑͱͯ͠ ܭࢉ͞ΕΔʢ ʣɼ྆ʹ͍ͭͯ ͱଋ͢Δ a + b ∞ 12
Optunaʹ͓͍ͯ NSGA-IIΛ͏ import optuna def objective(trial): x = trial.suggest_float("x", 0,
5) y = trial.suggest_float("y", 0, 3) v0 = 4 * x ** 2 + 4 * y ** 2 v1 = (x - 5) ** 2 + (y - 5) ** 2 return v0, v1 # objectiveશͯͷతؔΛฦ͢ # NSGAIISamplerΛ͏ sampler = optuna.samplers.NSGAIISampler(seed=1234) study = optuna.create_study( sampler=sampler, directions=["minimize", "minimize"] ) study.optimize(objective, n_trials=250) 13
ଟతϕΠζ࠷దԽ • తؔ୳ࡧۭؒʹ͍ͭͯϕΠζతͳϞσϧΛߏங͠ɼ֫ಘؔͱ ݺΕΔج४Λ༻͍ͯ༗ͳղΛޮతʹαϯϓϧ͢Δख๏ • తؔΛϞσϧԽɿຆͲͷଟతϕΠζ࠷దԽख๏ • ୳ࡧۭؒΛϞσϧԽɿMOTPE 14
MOTPE (Ozaki et al., 2020) • Optunaͷ୯త࠷దԽʹ͓͚Δඪ४ΞϧΰϦζϜͰ͋ΔTPEΛଟత ࠷దԽʹ֦ுͨ͠ͷ • Ϟσϧ୳ࡧۭؒͷ༗ɾඇ༗ͳղʹ͍ͭͯΧʔωϧີਪఆ
༗ ඇ༗ ୳ࡧۭؒʹ͓͍ͯରԠ͢Δ༗ͳղͷू߹ʹ ͍ͭͯΧʔωϧີਪఆ ୳ࡧۭؒʹ͓͍ͯରԠ͢Δඇ༗ͳղͷू߹ʹ ͍ͭͯΧʔωϧີਪఆ 15
MOTPE (Ozaki et al., 2020) • ࣍ʹධՁ͢ΔղExpected Hypervolume Improvement (EHVI)
֫ಘؔʹΑܾͬͯΊΔ • ू߹ ʹ ΛՃ͑ͨͱ͖ͷϋΠύϘϦϡʔϜ૿ՃྔͷظʹରԠɼ͜ΕΛ࠷େԽ͢Δ Λ࠾༻ • ࣮༗ɾඇ༗ྖҬͷ֬ີΛ ɼ ͱͨ͠ͱ͖ɼ ͕Γཱͭ EHVIY* (x) := ∫ max(IH (Y* ∪ {y}) − IH (Y*),0)p(y ∣ x)dy Y* y = f(x) x l(x) g(x) argmaxx EHVI(x) = argmaxx l(x)/g(x) Y r • ϋΠύϘϦϡʔϜ ʹଐ͢ΔϕΫτϧͱࢀর ʹғ·ΕͨྖҬ ͷମੵʢփ৭෦ʣ • ύϨʔτϑϩϯτମੵΛ࠷େԽ͢Δ Y r 16
Optunaʹ͓͍ͯ MOTPEΛ͏ ... # MOTPESamplerʹมߋ͢Δ͚ͩ sampler = optuna.samplers.MOTPESampler(seed=1234) study =
optuna.create_study( sampler=sampler, directions=["minimize", “minimize"] ) study.optimize(objective, n_trials=250) 17
ൺֱɿNSGA-IIͱMOTPE ؆୯ͳͰ͋ΕͲͪΒͰ͙͢ղ͚Δ 18
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ ͖ͬ͞ΑΓ͍͠ʢධՁճ250ʣ 19
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ • MOTPEධՁճʹݶք͋Γ ʢNSGA-IIزΒͰʣ MOTPE1000ճͰ15-20ఔɼଞͷଟత ϕΠζ࠷దԽख๏ʢPESMOSMS-EGOʣΑΓ ѹతʹ͍͕NSGA-IIͱൺΔͱʹͳΒͳ͍
20
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ • MOTPEධՁճʹݶք͋Γ ʢNSGA-IIزΒͰʣ • ७ਮͳࢄ࠷దԽNSGA-II͕ Α͍ʢMOTPEہॴղʹऩଋʣ
0-1φοϓαοΫʢ2త࠷େԽʣ 21
Optunaɿଟత࠷దԽؔ࿈ػೳ 22
ՄࢹԽ • ࢄਤ • (Parallel coordinate) ... sampler = optuna.samplers.MOTPESampler(seed=1234)
study = optuna.create_study(sampler=sampler, directions=["minimize", "minimize"]) study.optimize(objective, n_trials=250) # plotlyϕʔεͷՄࢹԽ fig = optuna.visualization.plot_pareto_front(study) fig.show() # matplotlibϕʔεͷՄࢹԽ optuna.visualization.matplotlib.plot_pareto_front( study ) plt.show() 23
ධՁ • ϋΠύϘϦϡʔϜ ... # ϋΠύϘϦϡʔϜܭࢉ͍ؔ·ͷͱ͜Ζ։ൃऀ͚API # কདྷతʹoptuna/_hypervolume/wfg.pyʹҠಈ͞ΕΔ༧ఆ wfg =
optuna.multi_objective._hypervolume.WFG() reference_point = np.array([3, 5]) trials = study.trials hvs = [] for i in range(1, len(trials) + 1): vector_set = np.array( [t.values for t in trials[:i]] ) hvs.append( wfg.compute(vector_set, reference_point) ) plt.style.use(“ggplot") plt.xlabel("Number of valuations") plt.ylabel("Hypervolume") plt.plot(range(1, len(hvs) + 1), hvs) plt.show() 24
·ͱΊ • ଟత࠷దԽύϨʔτ࠷దղͷू߹Λ֫ಘ͢Δ͜ͱ͕ඪ • OptunaਐԽܕଟత࠷దԽͱଟతϕΠζ࠷దԽͷ2λΠϓͷख๏Λఏڙ • લऀ൚༻తɼNSGA-IIͦͷ࠷දతͳख๏Ͱ20ؒͷ࣮͕͋Δ • ޙऀAutoML͖ɼMOTPEϋΠύύϥϝʔλ࠷దԽख๏TPEͷଟత൛ •
Optunaͷଟత࠷దԽؔ࿈ػೳΛհ • ଟత࠷దԽɼ୯త࠷దԽʹൺͯ׆༻ࣄྫ։ൃऀগͳ͍ɼࠓճΛ ͖͔͚ͬʹϢʔβ։ൃऀ͕૿͑Δͱخ͍͠ 25