Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elasticsearch for SQL Users
Search
Shaunak Kashyap
March 16, 2016
Technology
0
60
Elasticsearch for SQL Users
As presented at Great Wide Open 2016
Shaunak Kashyap
March 16, 2016
Tweet
Share
More Decks by Shaunak Kashyap
See All by Shaunak Kashyap
Best Practices for building HTTP APIs
ycombinator
2
82
Elasticsearch Hands On Workshop
ycombinator
0
41
Other Decks in Technology
See All in Technology
AWS DDoS攻撃防御の最前線
ryutakondo
1
160
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
840
Claude Codeは仕様駆動の夢を見ない
gotalab555
23
6.6k
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.4k
AI関数が早くなったので試してみよう
kumakura
0
300
Instant Apps Eulogy
cyrilmottier
1
110
Claude CodeでKiroの仕様駆動開発を実現させるには...
gotalab555
3
1.1k
データモデリング通り #2オンライン勉強会 ~方法論の話をしよう~
datayokocho
0
170
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
220
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
170
AIに頼りすぎない新人育成術
cuebic9bic
3
310
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
550
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Gamification - CAS2011
davidbonilla
81
5.4k
GraphQLとの向き合い方2022年版
quramy
49
14k
Typedesign – Prime Four
hannesfritz
42
2.7k
Building Applications with DynamoDB
mza
96
6.5k
Why Our Code Smells
bkeepers
PRO
337
57k
Visualization
eitanlees
146
16k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Making Projects Easy
brettharned
117
6.3k
Navigating Team Friction
lara
188
15k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
1 Shaunak Kashyap Developer Advocate at Elastic @shaunak Elasticsearch for
SQL users
2 The Elastic Stack Elasticsearch Store, Index & Analyze Kibana
User Interface Security Monitoring Alerting Plugins Logstash Beats Ingest Elastic Cloud: Elasticsearch as a Service Hosted Service
3 Agenda Search queries Data modeling Architecture 1 2 3
2 4 Agenda Search queries Data modeling Architecture 1 3
5 Agenda Search queries Data modeling 1 2 3 Architecture
6 Search Queries https://www.flickr.com/photos/samhames/4422128094
7 CREATE TABLE IF NOT EXISTS emails ( sender VARCHAR(255)
NOT NULL, recipients TEXT, cc TEXT, bcc TEXT, subject VARCHAR(1024), body MEDIUMTEXT, datetime DATETIME ); CREATE INDEX emails_sender ON emails(sender); CREATE FULLTEXT INDEX emails_subject ON emails(subject); CREATE FULLTEXT INDEX emails_body ON emails(body); curl -XPOST 'http://localhost:9200/enron' -d' { "mappings": { "email": { "properties": { "sender": { "type": "string", "index": "not_analyzed" }, "recipients": { "type": "string", "index": "not_analyzed" }, "cc": { "type": "string", "index": "not_analyzed" }, "bcc": { "type": "string", "index": "not_analyzed" }, "subject": { "type": "string", "analyzer": "english" }, "body": { "type": "string", "analyzer": "english" } } } } Schemas
8 Loading the data
9 [LIVE DEMO] • Search for text in a single
field • Search for text in multiple fields • Search for a phrase https://github.com/ycombinator/es-enron
10 Other Search Features Stemming Synonyms Did you mean? •
Jump, jumped, jumping • Queen, monarch • Monetery => Monetary
11 Data Modeling https://www.flickr.com/photos/samhames/4422128094 https://www.flickr.com/photos/ericparker/7854157310
12 To analyze or not to analyze? PUT cities/city/1 {
"city": "Atlanta", "population": 447841 } PUT cities/city/2 { "city": "New Albany", "population": 8829 } PUT cities/city/3 { "city": "New York", "population": 8406000 } POST cities/_search { "query": { "match": { "city": "New Albany" } } } QUERY + = ?
13 To analyze or not to analyze? PUT cities/city/1 {
"city": "Atlanta", "population": 447841 } PUT cities/city/2 { "city": "New Albany", "population": 8829 } PUT cities/city/3 { "city": "New York", "population": 8406000 } Term Document IDs Albany 2 New 2,3 Atlanta 1 York 3
14 To analyze or not to analyze? PUT cities {
"mappings": { "city": { "properties": { "city": { "type": "string", "index": "not_analyzed" } } } } } MAPPING Term Document IDs New Albany 2 New York 3 Atlanta 1
PUT blog/post/1 { "author_id": 1, "title": "...", "body": "..." }
PUT blog/post/2 { "author_id": 1, "title": "...", "body": "..." } PUT blog/post/3 { "author_id": 1, "title": "...", "body": "..." } 15 Relationships: Application-side joins PUT blog/author/1 { "name": "John Doe", "bio": "..." } POST blog/author/_search { "query": { "match": { "name": "John" } } } QUERY 1 POST blog/post/_search { "query": { "match": { "author_id": <each id from query 1 result> } } } QUERY 2
PUT blog/post/1 { "author_name": "John Doe", "title": "...", "body": "..."
} PUT blog/post/2 { "author_name": "John Doe", "title": "...", "body": "..." } 16 Relationships: Data denormalization POST blog/post/_search { "query": { "match": { "author_name": "John" } } } QUERY PUT blog/post/3 { "author_name": "John Doe", "title": "...", "body": "..." }
17 Relationships: Nested objects PUT blog/author/1 { "name": "John Doe",
"bio": "...", "blog_posts": [ { "title": "...", "body": "..." }, { "title": "...", "body": "..." }, { "title": "...", "body": "..." } ] } POST blog/author/_search { "query": { "match": { "name": "John" } } } QUERY
18 Relationships: Parent-child documents PUT blog/author/1 { "name": "John Doe",
"bio": "..." } POST blog/post/_search { "query": { "has_parent": { "type": "author", "query": { "match": { "name": "John" } } } QUERY PUT blog { "mappings": { "author": {}, "post": { "_parent": { "type": "author" } } } } PUT blog/post/1?parent=1 { "title": "...", "body": "..." } PUT blog/post/2?parent=1 { "title": "...", "body": "..." } PUT blog/post/3?parent=1 { "title": "...", "body": "..." }
19 Architecture https://www.flickr.com/photos/samhames/4422128094 https://www.flickr.com/photos/haribote/4871284379/
20 RDBMS Triggers database by Creative Stall from the Noun
Project 1 2
21 Async replication to Elasticsearch 1 2 3 ESSynchronizer flow
by Yamini Ahluwalia from the Noun Project
22 Async replication to Elasticsearch with Logstash 1 2 3
23 Forked writes from application 1 2
24 Forked writes from application (more robust) 1 2 queue
by Huu Nguyen from the Noun Project ESSynchronizer 3 4
25 Forked writes from application (more robust with Logstash) 1
2 3 4
26 Questions? @shaunak https://www.flickr.com/photos/nicknormal/2245559230/