Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
人流データを用いた人流制限解除後のCOVID-19感染状況の推定
Search
Yoriyuki Yamagata
November 27, 2021
Science
0
140
人流データを用いた人流制限解除後のCOVID-19感染状況の推定
Yoriyuki Yamagata
November 27, 2021
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
Individual-based epidemiological model of COVID19 using location data
yoriyukiprf
0
84
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
130
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
110
個人レベルの位置情報を使ったCOVID19の感染モデル
yoriyukiprf
0
98
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning
yoriyukiprf
0
150
引用の記述説の擁護
yoriyukiprf
0
180
Consistency proof of fragments of equational systems with substitution in bounded arithmetic
yoriyukiprf
0
93
Concepts on AI Fairness
yoriyukiprf
0
130
Falsification of Cyber Physical System Using Deep Reinforcement Learning
yoriyukiprf
1
130
Other Decks in Science
See All in Science
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.1k
機械学習を支える連続最適化
nearme_tech
PRO
1
190
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1k
マクロ経済学の視点で、財政健全化は必要か
ryo18cm
1
110
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
7k
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
140
FOGBoston2024
lcolladotor
0
120
教師なしテンソル分解に基づく、有糸分裂後の転写再活性化におけるヒストン修飾ブックマークとしての転写因子候補の抽出法
tagtag
0
140
小杉考司(専修大学)
kosugitti
2
570
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
340
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
170
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
660
Featured
See All Featured
Facilitating Awesome Meetings
lara
50
6.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Git: the NoSQL Database
bkeepers
PRO
427
64k
A designer walks into a library…
pauljervisheath
205
24k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Thoughts on Productivity
jonyablonski
68
4.4k
Embracing the Ebb and Flow
colly
84
4.5k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Transcript
⼈流データを⽤いた⼈流制限 解除後のCOVID-19感染状況 の推定 ⼭形 賴之,鷹⾒ 竣希,⼤⻄ 正輝 国⽴研究開発法⼈ 産業技術総合研究所 ⼈⼯知能学会合同研究会
データ指向構成マイニングとシミュレーション研究会
GPSデータによるCOVID19感染モデル ⼈⼯知能研究センター社会知能チームを中⼼に開発中 • 個⼈単位の移動データを⽤いたモデル 開発中 • 集計量(県内移動・県間移動)によるモデル ← 今⽇紹介
項⽬ 1. 使⽤データと前処理 2. 実⾏再⽣産数と県内平均移動距離の相関 3. 感染モデル 4. パラメーターのベイズ推定 5.
⼈流再開後の総重症者数・死亡者数の推定 6. 考察
使⽤データ • GPSデバイスの位置情報(Blog Watcher社) アプリ識別番号, デバイス識別番号, 経度, 緯度, 時刻 •
確認陽性者数(NHK) • 感染者個票データ(クラスター追跡班) • 全ての期間にわたるデータではない • 発症から報告までの時間差を推定するために使⽤
東京都の感染インシ デント数 報告陽性者数 → (Back projection) → 発症者数 → (Back
projection) → 感染インシデント数 報告遅れ:個票データの報告遅れに対数 正規分布を当てはめ 潜伏期間:Lauer et al.
都内の平均移動距離 GPSデバイスの平均移動距離 2020年1⽉15⽇-2⽉15⽇を0とした変化 量
東京都への来訪者数
実⾏再⽣産数と都内 移動 R^2 = 0.2781
𝑅! , α, 𝑅" , 𝐷はベイズ的に推定する 𝑀: 平均移動距離, 𝑉 #
: p県からの来訪者数, P# :p県の人口, gt 𝑘 : 生成時間分布, 𝐼# 𝑑 : p県のd日目の新規感染者 数 𝐼$%&'% 𝑑 ~NegBinomial(𝐸[𝐼$%&'% 𝑑] , 𝐷) 𝑅()) 𝑑 = 𝑅! + 𝛼 𝑀 𝑑 𝐼 ()) # 𝑑 = @ *+, - gt 𝑘 𝐼#[𝑑 − 𝑘] 𝐸[𝐼$%&'% 𝑑] = 𝑅()) 𝑑 𝐼 ()) $%&'% 𝑑 + 𝑅" @ #.$%&'% 𝑉 # 𝑃# 𝐼 ()) # 𝑑
推定された𝑅C , α, 𝑅D , 𝐷 2.5%分位 25%分位 中央値 75%分位
97.5%分 位 𝑅! 1.19 1.27 1.31 1.35 1.43 α 0.42 0.60 0.69 0.78 0.95 𝑅" 0.00 0.02 0.06 0.11 0.28 𝐷 15.52 18.00 19.42 20.95 24.10
データへの適合 得られたパラメータをもとに2020年4⽉1 ⽇から1000回シミュレーションを⾏った • 実線:感染⽇ベースの感染者数 • 点線:シミュレーション出⼒の中央値 • 濃いグレー:50% •
薄いグレー:95%
⼈流制限解除の条件を検討する ⼈流がCOVID-19以前に戻った場合 • 感染爆発は防げるか • 感染爆発が起きた場合、医療資源はどの程度必要か • 時系列予測ではなく、最終的な総感染者数を予測する
ワクチン効果減衰 Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine
HM, Benslimane FM, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N Engl J Med. 2021;1‒15.
重症化予防効果 ほぼ⼀定している
想定 • ⼈流以外の対策(マスク着⽤)などは現在と同じ • δ株は再⽣産数は従来型の2倍 Rb = 2 x 1.31
• ワクチン接種率: 65歳以下 80%, 65歳以上90% • ワクチンによる感染予防効果: 50% (半年に⼀回ブースター) • ⼈流制限解除時の罹患率が5% • 陽性確定者の重症化率: 0.003(65歳以下), 0.085(65歳以上) • 陽性確定者の死亡率:0.0006(65歳以下), 0.057(65歳以上) • ワクチンの重症化・死亡防⽌効果:95% • 感染者の発⾒率: 50% • 感染後の免疫は維持される
決定論的2集団SIRモ デル Magal, Pierre, Ousmane Seydi, and Glenn Webb. "Final
size of a multi- group SIR epidemic model: Irreducible and non-irreducible modes of transmission." Mathematical biosciences 301 (2018): 59-67.
感染者数 65歳以下 65歳以上 ワクチン接種済み 3,895,242 1,334,462 ワクチン接種なし 1,483,164 225,828 総感染者数:6,938,697
重症者数 総重症者数:14,951 65歳以下 65歳以上 ワクチン接種済み 292 2835 ワクチン接種なし 2225 9598
死亡者数 総重症者数:8842 65歳以下 65歳以上 ワクチン接種済み 58 1902 ワクチン接種なし 445 6436