Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
人流データを用いた人流制限解除後のCOVID-19感染状況の推定
Search
Yoriyuki Yamagata
November 27, 2021
Science
0
170
人流データを用いた人流制限解除後のCOVID-19感染状況の推定
Yoriyuki Yamagata
November 27, 2021
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
Individual-based epidemiological model of COVID19 using location data
yoriyukiprf
0
120
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
190
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
140
個人レベルの位置情報を使ったCOVID19の感染モデル
yoriyukiprf
0
120
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning
yoriyukiprf
0
170
引用の記述説の擁護
yoriyukiprf
0
240
Consistency proof of fragments of equational systems with substitution in bounded arithmetic
yoriyukiprf
0
120
Concepts on AI Fairness
yoriyukiprf
0
160
Falsification of Cyber Physical System Using Deep Reinforcement Learning
yoriyukiprf
1
160
Other Decks in Science
See All in Science
データベース08: 実体関連モデルとは?
trycycle
PRO
0
970
機械学習 - DBSCAN
trycycle
PRO
0
1.2k
2025-06-11-ai_belgium
sofievl
1
180
学術講演会中央大学学員会府中支部
tagtag
0
320
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
370
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
200
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
19k
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
110
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.1k
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
300
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The World Runs on Bad Software
bkeepers
PRO
72
12k
RailsConf 2023
tenderlove
30
1.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
660
Building Adaptive Systems
keathley
44
2.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Context Engineering - Making Every Token Count
addyosmani
8
360
How GitHub (no longer) Works
holman
315
140k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Transcript
⼈流データを⽤いた⼈流制限 解除後のCOVID-19感染状況 の推定 ⼭形 賴之,鷹⾒ 竣希,⼤⻄ 正輝 国⽴研究開発法⼈ 産業技術総合研究所 ⼈⼯知能学会合同研究会
データ指向構成マイニングとシミュレーション研究会
GPSデータによるCOVID19感染モデル ⼈⼯知能研究センター社会知能チームを中⼼に開発中 • 個⼈単位の移動データを⽤いたモデル 開発中 • 集計量(県内移動・県間移動)によるモデル ← 今⽇紹介
項⽬ 1. 使⽤データと前処理 2. 実⾏再⽣産数と県内平均移動距離の相関 3. 感染モデル 4. パラメーターのベイズ推定 5.
⼈流再開後の総重症者数・死亡者数の推定 6. 考察
使⽤データ • GPSデバイスの位置情報(Blog Watcher社) アプリ識別番号, デバイス識別番号, 経度, 緯度, 時刻 •
確認陽性者数(NHK) • 感染者個票データ(クラスター追跡班) • 全ての期間にわたるデータではない • 発症から報告までの時間差を推定するために使⽤
東京都の感染インシ デント数 報告陽性者数 → (Back projection) → 発症者数 → (Back
projection) → 感染インシデント数 報告遅れ:個票データの報告遅れに対数 正規分布を当てはめ 潜伏期間:Lauer et al.
都内の平均移動距離 GPSデバイスの平均移動距離 2020年1⽉15⽇-2⽉15⽇を0とした変化 量
東京都への来訪者数
実⾏再⽣産数と都内 移動 R^2 = 0.2781
𝑅! , α, 𝑅" , 𝐷はベイズ的に推定する 𝑀: 平均移動距離, 𝑉 #
: p県からの来訪者数, P# :p県の人口, gt 𝑘 : 生成時間分布, 𝐼# 𝑑 : p県のd日目の新規感染者 数 𝐼$%&'% 𝑑 ~NegBinomial(𝐸[𝐼$%&'% 𝑑] , 𝐷) 𝑅()) 𝑑 = 𝑅! + 𝛼 𝑀 𝑑 𝐼 ()) # 𝑑 = @ *+, - gt 𝑘 𝐼#[𝑑 − 𝑘] 𝐸[𝐼$%&'% 𝑑] = 𝑅()) 𝑑 𝐼 ()) $%&'% 𝑑 + 𝑅" @ #.$%&'% 𝑉 # 𝑃# 𝐼 ()) # 𝑑
推定された𝑅C , α, 𝑅D , 𝐷 2.5%分位 25%分位 中央値 75%分位
97.5%分 位 𝑅! 1.19 1.27 1.31 1.35 1.43 α 0.42 0.60 0.69 0.78 0.95 𝑅" 0.00 0.02 0.06 0.11 0.28 𝐷 15.52 18.00 19.42 20.95 24.10
データへの適合 得られたパラメータをもとに2020年4⽉1 ⽇から1000回シミュレーションを⾏った • 実線:感染⽇ベースの感染者数 • 点線:シミュレーション出⼒の中央値 • 濃いグレー:50% •
薄いグレー:95%
⼈流制限解除の条件を検討する ⼈流がCOVID-19以前に戻った場合 • 感染爆発は防げるか • 感染爆発が起きた場合、医療資源はどの程度必要か • 時系列予測ではなく、最終的な総感染者数を予測する
ワクチン効果減衰 Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine
HM, Benslimane FM, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N Engl J Med. 2021;1‒15.
重症化予防効果 ほぼ⼀定している
想定 • ⼈流以外の対策(マスク着⽤)などは現在と同じ • δ株は再⽣産数は従来型の2倍 Rb = 2 x 1.31
• ワクチン接種率: 65歳以下 80%, 65歳以上90% • ワクチンによる感染予防効果: 50% (半年に⼀回ブースター) • ⼈流制限解除時の罹患率が5% • 陽性確定者の重症化率: 0.003(65歳以下), 0.085(65歳以上) • 陽性確定者の死亡率:0.0006(65歳以下), 0.057(65歳以上) • ワクチンの重症化・死亡防⽌効果:95% • 感染者の発⾒率: 50% • 感染後の免疫は維持される
決定論的2集団SIRモ デル Magal, Pierre, Ousmane Seydi, and Glenn Webb. "Final
size of a multi- group SIR epidemic model: Irreducible and non-irreducible modes of transmission." Mathematical biosciences 301 (2018): 59-67.
感染者数 65歳以下 65歳以上 ワクチン接種済み 3,895,242 1,334,462 ワクチン接種なし 1,483,164 225,828 総感染者数:6,938,697
重症者数 総重症者数:14,951 65歳以下 65歳以上 ワクチン接種済み 292 2835 ワクチン接種なし 2225 9598
死亡者数 総重症者数:8842 65歳以下 65歳以上 ワクチン接種済み 58 1902 ワクチン接種なし 445 6436