Upgrade to Pro — share decks privately, control downloads, hide ads and more …

On proving consistency of equational theories in bounded arithmetic

On proving consistency of equational theories in bounded arithmetic

Yoriyuki Yamagata

October 16, 2022
Tweet

More Decks by Yoriyuki Yamagata

Other Decks in Research

Transcript

  1. Polynomial hierarchy (PH) P NP Σ! " ⊆ ⊆ ⊆

    ⊆ PTIME decision problems, Σ# " Nondeterministic PTIME decision problems Nondeterministic computation using Σ!$% " -oracle Σ!"# $ ≠ Σ! $ ? e.g., P ≠NP?
  2. Bounded formulas ∃𝑥% ≤ 𝑡%∀𝑥& ≤ 𝑡&𝜙 where 𝜙 ∈

    Σ!$% ' Σ# ' Σ% ' Σ! ' ⊆ ⊆ ⊆ ⊆ PTIME predicates 𝑃𝑢% … 𝑢( ∃𝑥 ≤ 𝑡% 𝑃𝑢% … 𝑢( P NP Σ! " ⊆ ⊆ ⊆ ⊆ represented by 𝑡! 𝑥", … 𝑥# ≤ 𝑃( 𝑥" , … , 𝑥# ) where |𝑥| is a length of bits and 𝑃 is a polynomial
  3. Bounded arithmetic BASIC + Σ! '-LIND S& # S& %

    S& ! ⊆ ⊆ ⊆ ⊆ BASIC + Σ# '-LIND BASIC + Σ% '-LIND Σ! '-LIND: Induction of formula 𝜙(𝑥) ∈ Σ! ' on the bit length of 𝑥
  4. Bounded Arithmetic: Language Constant: 0 Functions: S, +, ×, |

    # |, ! " , # Relation: =, ≤, ≥ |𝑛|: bit length of b ! . : division by 2, round to zero 𝑎 # 𝑏 = 2|/|0|1| (note 2/ cannot be defined) Meaning
  5. Bounded Arithmetic: bounded formulas ∀𝑥 ≤ 𝑡, ∃𝑥 ≤ 𝑡:

    bounded quantifiers ∀𝑥 ≤ |𝑡|, ∃𝑥 ≤ |𝑡|: sharply bounded quantifiers ∃𝑥# ≤ 𝑡# ∀𝑥" ≤ 𝑡" … ∃𝑥$ ≤ 𝑡$ 𝐴(𝑥# , … , 𝑥$ ) if 𝑘 is odd or ∃𝑥# ≤ 𝑡# ∀𝑥" ≤ 𝑡" … ∀𝑥$ ≤ 𝑡$ 𝐴(𝑥# , … , 𝑥$ ) if 𝑘 is even Σ$ %-formulas: roughly speaking,
  6. Bounded Arithmetic: 𝑆2 3 • BASIC axioms: many, non-trivial axioms

    but omitted • Σ& % − 𝑃𝐼𝑁𝐷 𝐴 0 ∧ ∀𝑥(𝐴 𝑥 2 → 𝐴 𝑥 ) → ∀𝑥𝐴(𝑥) if 𝐴 𝑥 ∈ Σ& %
  7. Relation of bounded arithmetic and PH Fact 1 𝑓 is

    a Σ23# 1 -definable function of 𝑆. 23# ⟺ 𝑓 is a Σ2 $-function Fact 2 S. 2 = 𝑆. 23# ⟹ 𝑆. ⊢ PH = Σ 234 $ where 𝑆. = ⋃ 𝑆. 2 Open Problem S" & ≠ 𝑆" &'#?
  8. 𝑻 ⊢ 𝐂𝐨𝐧𝐬𝐢𝐬(𝑬) Theory 𝑬 𝑻 ⊬ 𝐂𝐨𝐧𝐬𝐢𝐬(𝑬) ? PV

    w/o induction + propositional logic + BASIC axioms 𝑇 = 𝑆$ " (Buss and Ignjatocvic 1995) 𝑇 = 𝑆$ $ (Yamagata 2018) 𝑇 = 𝑆& % PV w/o induction + substitution 𝑇 = 𝑆$ " (Beckmann 2002) PV w/o induction, w/o substitution An approach using consistency proofs New Make ? weaker as possible Strong theory Weak theory
  9. Pure Equational Theory w/ Substitution 𝑓 𝜀, 𝑥# , …

    , 𝑥! = 𝑔A 𝑥# , … , 𝑥! 𝑓 0𝑥, 𝑥# , … , 𝑥! = 𝑔B 𝑥, 𝑥# , … , 𝑥! , 𝑓(𝑥, 𝑥# , … , 𝑥! ) 𝑓 1𝑥 𝑥# , … , 𝑥! = 𝑔# 𝑥, 𝑥# , … , 𝑥! , 𝑓(𝑥, 𝑥# , … , 𝑥! ) Recursive definitions ⊢ 𝑡 = 𝑡 𝑡 = 𝑢 ⊢ 𝑢 = 𝑡 𝑡 = 𝑢, 𝑢 = 𝑠 ⊢ 𝑡 = 𝑠 𝑡 = 𝑢 ⊢ 𝑠(𝑡) = 𝑠(𝑢) Equational rules 𝑡 𝑥 = 𝑢 𝑥 ⊢ 𝑡 𝑠 = 𝑢(𝑠) Substitution Binary string
  10. Consistency proof using truth values 1. Define Val( 𝑡 ,

    𝜌): the value of 𝑡 under assignment 𝜌 2. Define “𝑡 = 𝑢 is true” by “Val 𝑡 , 𝜌 = Val( 𝑢 , 𝜌)” 3. Prove if 𝑡# = 𝑢# , … , 𝑡C = 𝑢C ⊢ 𝑡 = 𝑢 and 𝑡# = 𝑢# , … , 𝑡C = 𝑢C are true, then 𝑡 = 𝑢 is true 4. Beause 0 = 1 is not true, ⊢ 0 = 1 never be proven A problem of this approach is Val( 𝑡 , 𝜌) is not PTIME However, we exploit the fact that “polynomial approximation” of Val( 𝑡 , 𝜌) is enough to show the consistency
  11. A bit of domain theory: dcpo 𝑃 dcpo 𝑃 is

    a poset which has a supremum of any directed set 𝑝# 𝑝. 𝑆 = p# ⊔ 𝑝. ∈ 𝑆 H 𝑆
  12. Algebraicity of 𝑃 𝑃 is algebraic ⇔ 𝑝 = ⨆{

    𝑞 ∣ 𝑞 ⊑ 𝑝, 𝑞: compact } for for any 𝑝 ∈ 𝑃 𝑝 𝑞# 𝑞. 𝑞4 𝑞D compact elements
  13. Scott domain Nonempty poset 𝑃 is called “Scott domain” if

    •𝑃 is a dcpo •𝑃 is bounded complete, i.e., all bounded subsets have a supremum • 𝑃 is algebraic
  14. Function space as Scott domain 𝑓: 𝑃 → 𝑄 is

    monotone if 𝑎 ⊑ 𝑏 ⇒ 𝑓 𝑎 ⊑ 𝑓 𝑏 𝑓: monotone is (Scott) continuous if 𝑓 ⨆𝑆 = ⨆𝑓(𝑆) Definition Fact 𝑃 → 𝑄 (set of continuous maps) forms a Scott domain by 𝑓 ⊑ 𝑔(∀𝑎 ∈ 𝑃, 𝑓 𝑎 ⊑ 𝑔(𝑎)) A continuous map is approximated by compact elements Meaning
  15. Consistent set 𝑆 𝑆 : a finite set of pairs

    of compact elements 𝑎 ↦ 𝑏 satisfying 𝑎# ↦ 𝑏# , 𝑎" ↦ 𝑏" ∈ 𝑆 and ∃𝑐, 𝑎# , 𝑎" ⊑ 𝑐 then ∃𝑑, 𝑏# , 𝑏" ⊑ 𝑑 𝑎! 𝑎" 𝑐 𝑏! 𝑏" 𝑑
  16. Compact elements of 𝑃 → 𝑄 𝑓 ∈ 𝑃 →

    𝑄 is compact if there is a consistent set 𝑆 and 𝑓 𝑥 = ⨆{ 𝑏 ∣ 𝑎 ↦ 𝑏 ∈ 𝑆 ∧ 𝑎 ⊑ 𝑥} 𝑎! 𝑎" 𝑥 𝑏! 𝑏" 𝑓(𝑥)
  17. Our strategy to prove 𝑆2 ` ⊢ PETS • Define

    a domain • Show compacts elements approximating standard functions are enough to interpret a given deduction in PETS • Represents compacts elements by consistent sets • Show all operations on consistent sets are PTIME 𝐥(𝑠): number of symbols in an object 𝑠 (formula etc.) Definition
  18. Scott domain 𝔻 ∗ 𝜀 0 ∗ 1 ∗ 0𝜀

    00 ∗ 01 ∗ 1𝜀 10 ∗ 11 ∗ ∗ : unknown value, the order (⊑) is a refinement relation
  19. Size measure Size measure 𝐠 𝐠 𝑣 = number of

    symbols in 𝑣 ∈ 𝔻 𝐠 𝜌 = max {𝐠 𝑣 ∣ 𝑣 = 𝜌 𝑥 for some 𝑥 ∈ dom(𝜌)} for assignment 𝜌 𝐠 𝑓 = max {𝐠 𝑣 , 𝐠 𝑤 ∣ 𝑣 ↦ 𝑤 ∈ 𝑓} for a consistent set 𝑓 Fact 𝐥(𝑣) ≤ 𝑃 𝐠 𝑣 , 𝜌 ≤ 𝑃 𝐠 𝜌 , #dom 𝜌 𝐥(𝑓) ≤ 𝑃 𝐠 𝑓 , #𝑓, ar 𝑓 where #𝑓 is a cardinality of 𝑓 and ar 𝑓 is arity of 𝑓
  20. Frame 𝐹 ∈ 𝔽 Frame 𝐹 : assignments of a

    consistent sets to a function symbol other than 𝜀, 0, 1 𝔽 has an order by a pointwise order Definition Size measure 𝐠 𝐹 = max {𝐠 f ∣ 𝑓 ∈ dom(𝐹))} for 𝐹 ∈ 𝔽 𝐥(𝐹) ≤ 𝑃(#dom 𝐹 , max{#𝐹 𝑓 ∣ 𝑓 ∈ dom(𝐹)}, 𝐠 𝐹 , max{ar 𝑓 ∣ 𝑓 ∈ dom 𝐹 })
  21. Term evaluation Val 𝜀 , 𝐹, 𝜌 = 𝜀, Val

    𝑥 , 𝐹, 𝜌 = 𝜌 𝑥 Val 0𝑡 , 𝐹, 𝜌 = 0 Val 𝑡 , 𝐹, 𝜌 Val 1𝑡 , 𝐹, 𝜌 = 1 Val 𝑡 , 𝐹, 𝜌 Val 𝑓(𝑡) , 𝐹, 𝜌 = F 𝑓 (Val 𝑡 , 𝐹, 𝜌 where 𝐹 ∈ 𝔽 Definition Fact 1. Val 𝑡 , 𝐹, 𝜌 is monotone resp. 𝐹 and 𝜌 by point-wise order 2. 𝐠 Val 𝑡 , 𝐹, 𝜌 ≤ max 𝐠 𝜌 , 𝐠 𝐹 + 𝐥(𝑡) 3. Val 𝑡 , 𝐹, 𝜌 is PTIME resp. 𝑡 , 𝐹, 𝜌 4. Val 𝑡(𝑠) , 𝐹, 𝜌 = Val 𝑡(𝑥) , 𝐹, 𝜌[𝑥 ↦ Val 𝑠 , 𝐹, 𝜌 ]
  22. Model 𝑀 ∈ 𝕄 𝑀 ∈ 𝔽 is a model

    if for each recursive axiom of 𝑓, Val 𝑓 𝜀, 𝑥# , … , 𝑀, 𝜌 ⊑ Val( 𝑔A 𝑥# , … , 𝑀, 𝜌) Val 𝑓 0𝑥, 𝑥# , … , 𝑀, 𝜌 ⊑ Val(⌈𝑔B 𝑥, 𝑥# , … , 𝑓(𝑥, 𝑥# , … ⌉, 𝑀, 𝜌) Val 𝑓 1𝑥, 𝑥# , … , 𝑀, 𝜌 ⊑ Val(⌈𝑔# 𝑥, 𝑥# , … , 𝑓(𝑥, 𝑥# , … ⌉, 𝑀, 𝜌) Remark: 𝑀 ∈ 𝔽 is Π# B Definition Theorem Model exists ∵ Empty frame 𝐹 is a model
  23. Consistency proof Theorem 1 If PETS ⊢ 𝑡 = 𝑠

    and ∀𝑀 ∈ 𝕄, ∃𝑀(, 𝑀(( ∈ 𝕄 s.t. Val 𝑡 , 𝑀, 𝜌 ⊑ Val 𝑠 , 𝑀(, 𝜌 Val 𝑡 , 𝑀′′, 𝜌 ⊒ Val 𝑠 , 𝑀, 𝜌 Theorem is Π) * Theorem cannot be an induction hypothesis
  24. (𝜅, 𝒟)-Model 𝑀 ∈ 𝕄(𝜅, 𝒟) 𝑀 ∈ 𝔽 is

    a (𝜅, 𝒟)- model if 𝐠 𝑀 , … ≤ 𝜅 and Val 𝑓 𝜀, 𝑥# , … , 𝑀, 𝜌 ⊑ Val( 𝑔A 𝑥# , … , 𝑀, 𝜌) Val 𝑓 0𝑥, 𝑥# , … , 𝑀, 𝜌 ⊑ Val(⌈𝑔B 𝑥, 𝑥# , … , 𝑓(𝑥, 𝑥# , … ⌉, 𝑀, 𝜌) Val 𝑓 1𝑥, 𝑥# , … , 𝑀, 𝜌 ⊑ Val(⌈𝑔# 𝑥, 𝑥# , … , 𝑓(𝑥, 𝑥# , … ⌉, 𝑀, 𝜌) for each recursive axiom in a derivation 𝒟 and 𝐠 𝜌 ≤ 𝜅 Definition (𝜅, 𝒟)-Model is Π# %-notion
  25. Bounded version of theorem Theorem 2 ∀ 𝒟 : derivation,

    ∀𝑈: integer, 𝑈 ≥ 𝐥 𝒟 ∀ 𝒟* : sub-derivation of 𝒟, s. t. 𝒟* ⊢ 𝑡 = 𝑠 ∀𝑀 ∈ 𝕄 𝜅, 𝒟 , 𝜅 ≤ 𝑈 − 𝐥(𝒟* ) ∀𝜌: assignment, 𝐠 𝜌 ≤ 𝑈 − 𝐥(𝒟* ) ∃𝑀(, 𝑀(( ∈ 𝕄(𝜅 + 𝐥 𝒟* , 𝒟) s.t. M ⊑ 𝑀( ∧ Val 𝑡 , 𝑀, 𝜌 ⊑ Val 𝑠 , 𝑀(, 𝜌 M ⊑ 𝑀(( ∧ Val 𝑡 , 𝑀′′, 𝜌 ⊒ Val 𝑠 , 𝑀, 𝜌 The proof is induction on 𝒟* inside of 𝑆" ) I.H. Π) % Π# %
  26. Consistency proof in 𝑆2 † Corollary PETS is consistent Assume

    𝒟 ⊢ 0 = 1 Let 𝑈 = 𝐥 𝒟 + 𝑂(0), 𝒟* = 𝒟, 𝑀: empty frame, 𝜌: empty By theorem 2, 0 ⊑ 1 Contradiction
  27. Proof strategy Induction on 𝒟* 1. Case analysis on the

    last rule of 𝒟* 2. Construct from 𝑀 to 𝑀(, 𝑀′′ 3. Check the 𝐠 𝑀′ , 𝐠 𝑀′′ ≤ 𝐠 𝑀 + 𝐥(𝒟* ) ← We omit this part Because the theorem 2 is Π) %-statement, the proof is carried out in 𝑆" )
  28. Proof in 𝑆2 †: recursive definition ⊢ 𝑓 0𝑥 =

    𝑔(𝑥, 𝑓 𝑥 ) 𝑀 𝑀′′ 𝑀(( 𝑓 ≔ 𝑀 𝑓 ∪ {0𝑣 ↦ 𝑀 𝑔 𝑣, 𝑀 𝑓 𝑣 } where 𝑣 = 𝜌(𝑥) 𝑀 𝑀# = 𝑀
  29. Proof in 𝑆2 †: transitivity rule 𝑡 = 𝑢 𝑢

    = 𝑠 𝑡 = 𝑠 𝑀 𝑀! 𝑀′ 𝑀 𝑀′
  30. Proof in 𝑆2 † : compatibility rule 𝑡 = 𝑢

    𝑠 𝑡 = 𝑠 𝑢 𝑀 𝑀′ 𝑀 𝑀′ Val 𝑠 𝑡 , 𝑀, 𝜌 = Val 𝑠 𝑥 , 𝑀, 𝜌 𝑥 ↦ Val 𝑡 , 𝑀, 𝜌 ⊑ Val 𝑠 𝑥 , 𝑀, 𝜌 𝑥 ↦ Val 𝑢 , 𝑀E, 𝜌 ⊑ Val 𝑠 𝑢 , 𝑀E, 𝜌
  31. Proof in 𝑆2 † : substitution rule !(#)%&(#) ! '

    %& ' 𝑀 𝑀′ 𝑀 𝑀′ Val 𝑡 𝑠 , 𝑀, 𝜌 = Val 𝑡 𝑥 , 𝑀, 𝜌 𝑥 ↦ Val 𝑠 , 𝑀, 𝜌 ⊑ Val 𝑢 𝑥 , 𝑀′, 𝜌 𝑥 ↦ Val 𝑠 , 𝑀, 𝜌 ⊑ Val 𝑢 𝑥 , 𝑀E, 𝜌 𝑥 ↦ Val 𝑠 , 𝑀E, 𝜌 = Val 𝑢 𝑠 , 𝑀E, 𝜌
  32. Reduction from 𝑆2 † to 𝑆2 2 ⊢ " 0$

    = &($, " $ ) ! !′′ !!! " ≔ ! " ∪ {0' ↦ ! ) ', ! " ' } where ' = -(/) ! !! = ! Observation: specific set of constructions are used in the proof updates Replace “∀𝑀 ∈ 𝕄 𝜅, 𝒟 ” to “∀ 𝜎: seq. of updates” and 𝑀 to 𝑀* ∗ 𝜎 Π# % Σ# %
  33. Update 𝑓: ̅ 𝑣 ↦ 𝑤 on a frame 𝐹

    (Σ` Ž) 𝑓: ̅ 𝑣 ↦ 𝑤 is update if • 𝑓: function symbol, 𝑣,𝑤 ∈ 𝔻 • 𝐠 𝑣, 𝑤 ≤ 𝜅 • there is an axiom 𝑓 ̅ 𝑡 = 𝑢 used in 𝒟 • there is an assignment 𝜌 satisfying 𝑣& = 𝜌(𝑡& ) for 1 ≤ 𝑖 ≤ ar 𝑓 and 𝑤 = Val 𝑢 , 𝐹, 𝜌 Fixed 𝐠 𝑓: ̅ 𝑣 ↦ 𝑤 = max 𝐠 ̅ 𝑣 , 𝐠 w 𝐠 𝜎 = max 𝐠 𝑓: ̅ 𝑣 ↦ 𝑤 𝑓: ̅ 𝑣 ↦ 𝑤 ∈ 𝜎} for a seq. of updates 𝜎
  34. • 𝐹 be a 𝜅-model of 𝒟 • 𝑓: ̅

    𝑣 ↦ 𝑤 on a frame 𝐹 • 𝐹E = 𝐹 ∗ 𝑓: ̅ 𝑣 → 𝑤 then 𝐹E is a 𝜅-model of 𝒟 and 𝐠 𝐹E = max{𝐠 𝐹 , 𝐠 y 𝒗), 𝐠(𝑤 } Proposition 𝐹E = 𝐹 ∗ 𝑓: ̅ 𝑣 ↦ 𝑤 is defined by • 𝐹E 𝑓 = 𝐹 𝑓 ∪ ̅ 𝑣 → 𝑤 otherwise same to 𝐹 𝐹 ∗ 𝜎 for seq. of updates 𝜎 is defined similarly Definition Model update
  35. Consistency proof inside 𝑆2 2 Theorem 3 ∀ 𝒟 :

    derivation, ∀𝑈: integer, 𝑈 ≥ 𝐥 𝒟 , ∀𝑀 ∈ 𝕄 𝑈 − 𝐥 𝒟 , 𝒟 ∀ 𝒟* : sub-derivation of 𝒟, 𝒟* ⊢ 𝑡 = 𝑠 ∀𝜌: assignment and ∀𝜎: updates, 𝐠 𝜎 , 𝐠 𝜌 ≤ 𝑈 − 𝐥 𝒟* , ∃𝜎(, 𝜎((, 𝐠 𝜎′ , 𝐠 𝜎′′ ≤ max 𝐠 𝜎 , 𝐠 𝜌 , 𝐠 𝐹 + 𝐥 𝒟* Val 𝑡 , 𝑀 ∗ 𝜎, 𝜌 ⊑ Val 𝑠 , 𝑀 ∗ 𝜎 ∗ 𝜎′, 𝜌 Val 𝑡 , 𝑀,∗ 𝜎 ∗ 𝜎((, 𝜌 ⊒ Val 𝑠 , 𝑀 ∗ 𝜎, 𝜌 I.H. Π" % Σ# %
  36. Reduction from 𝑆2 2 to 𝑆2 ` • Observation: Construction

    of 𝜎E, 𝜎EE from 𝜎 obtained from 𝒟B • Explicitly construct 𝜎E, 𝜎EE from 𝜎 • This removes existential quantifier ∃𝜎E, 𝜎EE... • I.H. becomes Π# 1
  37. Instructions A sequence showing how 𝐹, 𝜎, 𝜌 are modified

    by passing through a derivation Instruction: • A 𝑡 ⟶ 𝑢 , A 𝑡 ⟵ 𝑢 for any recursive axiom 𝑡 = 𝑢 • S ↑ 𝑠, ⁄ 𝑡 𝑥 , S ↓ 𝑠, ⁄ 𝑡 𝑥 , 𝑠, 𝑡: terms, 𝑥: variable Definition
  38. Apply instructions to a model Φ A 𝑡 ⟶ 𝑢

    , 𝐹, 𝜎, 𝜌 ≔ 𝐹, 𝜎, 𝜌 Φ A 𝑓(0𝑥) ⟵ 𝑔(𝑥, 𝑓 𝑥 ) , 𝐹, 𝜎, 𝜌 ≔ 𝐹, 𝜎 ∗ 𝑓: 0𝑣 ↦ 𝑤, 𝜌 𝑣 = 𝜌 𝑥 𝑤 = 𝐹 ∗ 𝜎 𝑔 𝑣, 𝐹 ∗ 𝜎 𝑓 𝑣 Φ S ↑ 𝑠, ⁄ 𝑡 𝑥 , 𝐹, 𝜎, 𝜌 ≔ 𝐹, 𝜎, 𝜌 𝑥 ⟼ Val 𝑡, 𝐹 ∗ 𝜎, 𝜌 Φ S ↓ 𝑠, ⁄ 𝑡 𝑥 , 𝐹, 𝜎, 𝜌 ≔ 𝐹, 𝜎, 𝜌 ↾+
  39. Instruction seq. for a defining axiom ⊢ 𝑓(0𝑥) = 𝑔(𝑥,

    𝑓 𝑥 ) A[𝑓(𝑡) → 𝑢] A[𝑓(𝑡) ← 𝑢]
  40. ⊢ 𝑡 = 𝑡 The construction of Inst(𝒟) is same

    to Inst(𝒟) From here, we omit Inst(𝒟) Instruction seq. for a derivation
  41. 𝑡 = 𝑢 𝑢 = 𝑠 𝑢 = 𝑠 𝜏#

    𝜏" 𝜏! ∷ 𝜏" Instruction seq. for a derivation
  42. 𝑡(𝑥) = 𝑢(𝑥) 𝑡 𝑠 = 𝑢(𝑠) 𝜏 S ↑

    𝑡, ⁄ 𝑠 𝑥 :𝜏: S ↓ 𝑢, ⁄ 𝑠 𝑥 Instruction seq. for a derivation
  43. Main lemma 𝑀 ∈ 𝕄 𝜅, 𝒟 , 𝜌: assign.,

    𝑀(, 𝜎′, 𝜌( = Φ 𝜏, 𝑀, 𝜎, 𝜌 • 𝐠 𝜎′ , 𝐠 𝜌( ≤ max(𝐠 𝑀 , 𝐠 𝜎 , 𝐠 𝜌 ) + 𝐥(𝜏) • Φ 𝜎 ∷ 𝜏, 𝑀, 𝜌 = Φ(𝜎, Φ 𝜏, 𝑀, 𝜌 ) • If 𝑀′, 𝜎′, 𝜌′ = Φ(Inst 𝒟 , 𝑀, 𝜎, 𝜌), then 𝜌( = 𝜌 • If 𝑀((, 𝜎′′, 𝜌(( = Φ Inst 𝒟 , 𝑀, 𝜎, 𝜌 , then 𝜌(( = 𝜌 Lemma
  44. Consistency proof inside 𝑆2 ` Theorem 4 ∀ 𝒟 :

    derivation, ∀𝑈: integer, 𝑈 ≥ 𝐥 𝒟 , ∀𝑀 ∈ 𝕄 𝑈 − 𝐥 𝒟 , 𝒟 ∀ 𝒟* : sub-derivation of 𝒟, 𝒟* ⊢ 𝑡 = 𝑠 ∀𝜌: assignment and ∀𝜎: updates, 𝐠 𝜎 , 𝐠 𝜌 ≤ 𝑈 − 𝐥 𝒟* , 𝑀, 𝜎(, 𝜌( ≔ Φ Inst 𝒟* , 𝑀, 𝜎, 𝜌 , 𝑀, 𝜎((, 𝜌′′ ≔ Φ Inst 𝒟* , 𝑀, 𝜎, 𝜌 Val 𝑡 , 𝑀 ∗ 𝜎, 𝜌 ⊑ Val 𝑠 , 𝑀 ∗ 𝜎 ∗ 𝜎′, 𝜌 Val 𝑡 , 𝑀,∗ 𝜎 ∗ 𝜎((, 𝜌 ⊒ Val 𝑠 , 𝑀 ∗ 𝜎, 𝜌 I.H. Π# %