Upgrade to PRO for Only $50/Yearโ€”Limited-Time Offer! ๐Ÿ”ฅ

On proving consistency of equational theories i...

On proving consistency of equational theories in boundedย arithmetic

We consider pure equational theories that allow substitution but disallow induction, which we denote as PETS, based on recursive definition of their function symbols. We show that the Bounded Arithmetic theory S12 proves the consistency of PETS. Our approach employs models for PETS based on approximate values resembling notions from domain theory in Bounded Arithmetic, which may be of independent interest.

Avatar for Yoriyuki Yamagata

Yoriyuki Yamagata

May 09, 2022
Tweet

More Decks by Yoriyuki Yamagata

Other Decks in Research

Transcript

  1. On proving consistency of equational theories in bounded arithmetic Arnold

    Beckmann and Yoriyuki Yamagata Prague logic seminar, 2022-05-09
  2. Polynomial hierarchy (PH) P NP ฮฃ! " โІ โІ โІ

    โІ PTIME decision problems, ฮฃ# " Nondeterministic PTIME decision problems Nondeterministic computation using ฮฃ!$% " -oracle ฮฃ!"# $ โ‰  ฮฃ! $ ? e.g., P โ‰ NP?
  3. Bounded formulas โˆƒ๐‘ฅ% โ‰ค ๐‘ก%โˆ€๐‘ฅ& โ‰ค ๐‘ก&๐œ™ where ๐œ™ โˆˆ

    ฮฃ!$% ' ฮฃ# ' ฮฃ% ' ฮฃ! ' โІ โІ โІ โІ PTIME predicates ๐‘ƒ๐‘ข% โ€ฆ ๐‘ข( โˆƒ๐‘ฅ โ‰ค ๐‘ก% ๐‘ƒ๐‘ข% โ€ฆ ๐‘ข( P NP ฮฃ! " โІ โІ โІ โІ represented by ๐‘ก! ๐‘ฅ", โ€ฆ ๐‘ฅ# โ‰ค ๐‘ƒ( ๐‘ฅ" , โ€ฆ , ๐‘ฅ# ) where |๐‘ฅ| is a length of bits and ๐‘ƒ is a polynomial
  4. Bounded arithmetic BASIC + ฮฃ! '-LIND S& # S& %

    S& ! โІ โІ โІ โІ BASIC + ฮฃ# '-LIND BASIC + ฮฃ% '-LIND ฮฃ! '-LIND: Induction of formula ๐œ™(๐‘ฅ) โˆˆ ฮฃ! ' on the bit length of ๐‘ฅ
  5. Relation of bounded arithmetic and PH Fact 1 ๐‘“ is

    a ฮฃ./# 0 -definable function of ๐‘†1 ./# โŸบ ๐‘“ is a ฮฃ. $-function Fact 2 S1 . = ๐‘†1 ./# โŸน ๐‘†1 โŠข PH = ฮฃ ./2 $ where ๐‘†1 = โ‹ƒ ๐‘†1 . Open Problem S! " โ‰  ๐‘†! "#$?
  6. ๐‘ป โŠข ๐‚๐จ๐ง๐ฌ๐ข๐ฌ(๐‘ฌ) Theory ๐‘ฌ ๐‘ป โŠฌ ๐‚๐จ๐ง๐ฌ๐ข๐ฌ(๐‘ฌ) ? PV

    w/o induction + propositional logic + BASIC axioms ๐‘‡ = ๐‘†$ " (Buss and Ignjatocvic 1995) ๐‘‡ = ๐‘†$ $ (Yamagata 2018) ๐‘‡ = ๐‘†& % PV w/o induction + substitution ๐‘‡ = ๐‘†$ " (Beckmann 2002) PV w/o induction, w/o substitution An approach using consistency proofs New Make ? weaker as possible Strong theory Weak theory
  7. Pure Equational Theory w/ Substitution ๐‘“ ๐œ€, ๐‘ฅ# , โ€ฆ

    , ๐‘ฅ! = ๐‘”? ๐‘ฅ# , โ€ฆ , ๐‘ฅ! ๐‘“ 0๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘ฅ! = ๐‘”@ ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘ฅ! , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘ฅ! ) ๐‘“ 1๐‘ฅ ๐‘ฅ# , โ€ฆ , ๐‘ฅ! = ๐‘”# ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘ฅ! , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘ฅ! ) Recursive definitions โŠข ๐‘ก = ๐‘ก ๐‘ก = ๐‘ข โŠข ๐‘ข = ๐‘ก ๐‘ก = ๐‘ข, ๐‘ข = ๐‘  โŠข ๐‘ก = ๐‘  ๐‘ก = ๐‘ข โŠข ๐‘ (๐‘ก) = ๐‘ (๐‘ข) Equational rules ๐‘ก ๐‘ฅ = ๐‘ข ๐‘ฅ โŠข ๐‘ก ๐‘  = ๐‘ข(๐‘ ) Substitution Binary string
  8. Consistency proof using truth values 1. Define Val( ๐‘ก ,

    ๐œŒ): the value of ๐‘ก under assignment ๐œŒ 2. Define โ€œ๐‘ก = ๐‘ข is trueโ€ by โ€œVal ๐‘ก , ๐œŒ = Val( ๐‘ข , ๐œŒ)โ€ 3. Prove if ๐‘ก# = ๐‘ข# , โ€ฆ , ๐‘กA = ๐‘ขA โŠข ๐‘ก = ๐‘ข and ๐‘ก# = ๐‘ข# , โ€ฆ , ๐‘กA = ๐‘ขA are true, then ๐‘ก = ๐‘ข is true 4. Beause 0 = 1 is not true, โŠข 0 = 1 never be proven A problem of this approach is Val( ๐‘ก , ๐œŒ) is not PTIME However, we exploit the fact that โ€œpolynomial approximationโ€ of Val( ๐‘ก , ๐œŒ) is enough to show the consistency
  9. A bit of domain theory: dcpo ๐‘ƒ dcpo ๐‘ƒ is

    a poset which has a supremum of any directed set ๐‘# ๐‘1 ๐‘† = p# โŠ” ๐‘1 โˆˆ ๐‘† B ๐‘†
  10. Algebraicity of ๐‘ƒ ๐‘ƒ is algebraic โ‡” ๐‘ = โจ†{

    ๐‘ž โˆฃ ๐‘ž โŠ‘ ๐‘, ๐‘ž: compact } for for any ๐‘ โˆˆ ๐‘ƒ ๐‘ ๐‘ž# ๐‘ž1 ๐‘ž2 ๐‘žB compact elements
  11. Scott domain Nonempty poset ๐‘ƒ is called โ€œScott domainโ€ if

    โ€ข๐‘ƒ is a dcpo โ€ข๐‘ƒ is bounded complete, i.e., all bounded subsets have a supremum โ€ข ๐‘ƒ is algebraic
  12. Function space as Scott domain ๐‘“: ๐‘ƒ โ†’ ๐‘„ is

    monotone if ๐‘Ž โŠ‘ ๐‘ โ‡’ ๐‘“ ๐‘Ž โŠ‘ ๐‘“ ๐‘ ๐‘“: monotone is (Scott) continuous if ๐‘“ โจ†๐‘† = โจ†๐‘“(๐‘†) Definition Fact ๐‘ƒ โ†’ ๐‘„ (set of continuous maps) forms a Scott domain by ๐‘“ โŠ‘ ๐‘”(โˆ€๐‘Ž โˆˆ ๐‘ƒ, ๐‘“ ๐‘Ž โŠ‘ ๐‘”(๐‘Ž)) A continuous map is approximated by compact elements Meaning
  13. Consistent set ๐‘† ๐‘† : a finite set of pairs

    of compact elements ๐‘Ž โ†ฆ ๐‘ satisfying ๐‘Ž$ โ†ฆ ๐‘$ , ๐‘Ž! โ†ฆ ๐‘! โˆˆ ๐‘† and โˆƒ๐‘, ๐‘Ž$ , ๐‘Ž! โŠ‘ ๐‘ then โˆƒ๐‘‘, ๐‘$ , ๐‘! โŠ‘ ๐‘‘ ๐‘Ž! ๐‘Ž" ๐‘ ๐‘! ๐‘" ๐‘‘
  14. Compact elements of ๐‘ƒ โ†’ ๐‘„ ๐‘“ โˆˆ ๐‘ƒ โ†’

    ๐‘„ is compact if there is a consistent set ๐‘† and ๐‘“ ๐‘ฅ = โจ†{ ๐‘ โˆฃ ๐‘Ž โ†ฆ ๐‘ โˆˆ ๐‘† โˆง ๐‘Ž โŠ‘ ๐‘ฅ} ๐‘Ž! ๐‘Ž" ๐‘ฅ ๐‘! ๐‘" ๐‘“(๐‘ฅ)
  15. Our strategy to prove ๐‘†N O โŠข PETS โ€ข Define

    a domain โ€ข Show compacts elements approximating standard functions are enough to interpret a given deduction in PETS โ€ข Represents compacts elements by consistent sets โ€ข Show all operations on consistent sets are PTIME ๐ฅ(๐‘ ): number of symbols in an object ๐‘  (formula etc.) Definition
  16. Scott domain ๐”ป โˆ— ๐œ€ 0 โˆ— 1 โˆ— 0๐œ€

    00 โˆ— 01 โˆ— 1๐œ€ 10 โˆ— 11 โˆ— โˆ— : unknown value, the order (โŠ‘) is a refinement relation
  17. Size measure Size measure ๐  ๐  ๐‘ฃ = number of

    symbols in ๐‘ฃ โˆˆ ๐”ป ๐  ๐œŒ = max {๐  ๐‘ฃ โˆฃ ๐‘ฃ = ๐œŒ ๐‘ฅ for some ๐‘ฅ โˆˆ dom(๐œŒ)} for assignment ๐œŒ ๐  ๐‘“ = max {๐  ๐‘ฃ , ๐  ๐‘ค โˆฃ ๐‘ฃ โ†ฆ ๐‘ค โˆˆ ๐‘“} for a consistent set ๐‘“ Fact ๐‘ฃ โ‰ค ๐‘ƒ ๐  ๐‘ฃ , ๐œŒ โ‰ค ๐‘ƒ ๐  ๐œŒ , #dom ๐œŒ ๐‘“ โ‰ค ๐‘ƒ ๐  ๐‘“ , #๐‘“, ar ๐‘“ where #๐‘“ is a cardinality of ๐‘“ and ar ๐‘“ is arity of ๐‘“
  18. Frame ๐น โˆˆ ๐”ฝ Frame ๐น : assignments of a

    consistent sets to a function symbol other than ๐œ€, 0, 1 ๐”ฝ has an order by a pointwise order Definition Size measure ๐  ๐น = max {๐  f โˆฃ ๐‘“ โˆˆ dom(๐น))} for ๐น โˆˆ ๐”ฝ ๐น โ‰ค ๐‘ƒ(#dom ๐น , max{#๐น ๐‘“ โˆฃ ๐‘“ โˆˆ dom(๐น)}, ๐  ๐น , max{ar ๐‘“ โˆฃ ๐‘“ โˆˆ dom ๐น })
  19. Term evaluation Val ๐œ€ , ๐น, ๐œŒ = ๐œ€, Val

    ๐‘ฅ , ๐น, ๐œŒ = ๐œŒ ๐‘ฅ Val 0๐‘ก , ๐น, ๐œŒ = 0 Val ๐‘ก , ๐น, ๐œŒ Val 1๐‘ก , ๐น, ๐œŒ = 1 Val ๐‘ก , ๐น, ๐œŒ Val ๐‘“(๐‘ก) , ๐น, ๐œŒ = F ๐‘“ (Val ๐‘ก , ๐น, ๐œŒ where ๐น โˆˆ ๐”ฝ Definition Fact 1. Val ๐‘ก , ๐น, ๐œŒ is monotone resp. ๐น and ๐œŒ by point-wise order 2. ๐  Val ๐‘ก , ๐น, ๐œŒ โ‰ค max ๐  ๐œŒ , ๐  ๐น + ๐ฅ(๐‘ก) 3. Val ๐‘ก , ๐น, ๐œŒ is PTIME resp. ๐‘ก , ๐น, ๐œŒ 4. Val ๐‘ก(๐‘ ) , ๐น, ๐œŒ = Val ๐‘ก(๐‘ฅ) , ๐น, ๐œŒ[๐‘ฅ โ†ฆ Val ๐‘  , ๐น, ๐œŒ ]
  20. Model ๐‘€ โˆˆ ๐•„ ๐‘€ โˆˆ ๐”ฝ is a model

    if for each recursive axiom of ๐‘“, Val ๐‘“ ๐œ€, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val( ๐‘”? ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ) Val ๐‘“ 0๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val(โŒˆ๐‘”@ ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ โŒ‰, ๐‘€, ๐œŒ) Val ๐‘“ 1๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val(โŒˆ๐‘”# ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ โŒ‰, ๐‘€, ๐œŒ) Remark: ๐‘€ โˆˆ ๐”ฝ is ฮ # @ Definition Theorem Model exists โˆต Empty frame ๐น is a model
  21. Consistency proof Theorem 1 If PETS โŠข ๐‘ก = ๐‘ 

    and โˆ€๐‘€ โˆˆ ๐•„, โˆƒ๐‘€%, ๐‘€%% โˆˆ ๐•„ s.t. Val ๐‘ก , ๐‘€, ๐œŒ โŠ‘ Val ๐‘  , ๐‘€%, ๐œŒ Val ๐‘ก , ๐‘€โ€ฒโ€ฒ, ๐œŒ โŠ’ Val ๐‘  , ๐‘€, ๐œŒ Theorem is ฮ & ' Theorem cannot be an induction hypothesis
  22. (๐œ…, ๐‘ˆ, ๐’Ÿ)-Model ๐‘€ โˆˆ ๐•„(๐œ…, ๐’Ÿ) ๐‘€ โˆˆ ๐”ฝ

    is a (๐œ…, ๐‘ˆ, ๐’Ÿ)- model if ๐  ๐‘€ , โ€ฆ โ‰ค ๐‘ˆ โˆ’ ๐œ… and Val ๐‘“ ๐œ€, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val( ๐‘”? ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ) Val ๐‘“ 0๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val(โŒˆ๐‘”@ ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ โŒ‰, ๐‘€, ๐œŒ) Val ๐‘“ 1๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘€, ๐œŒ โŠ‘ Val(โŒˆ๐‘”# ๐‘ฅ, ๐‘ฅ# , โ€ฆ , ๐‘“(๐‘ฅ, ๐‘ฅ# , โ€ฆ โŒ‰, ๐‘€, ๐œŒ) for each recursive axiom in a derivation ๐’Ÿ and ๐  ๐œŒ โ‰ค ๐‘ˆ โˆ’ ๐œ… Definition (๐œ…, ๐‘ˆ, ๐’Ÿ)-Model is ฮ $ (-notion
  23. Bounded version of theorem Theorem 2 โˆ€ ๐’Ÿ : derivation,

    โˆ€๐‘ˆ: integer, ๐‘ˆ โ‰ฅ ๐ฅ ๐’Ÿ โˆ€ ๐’Ÿ' : sub-derivation of ๐’Ÿ, s. t. ๐’Ÿ' โŠข ๐‘ก = ๐‘  โˆ€๐‘€ โˆˆ ๐•„ ๐œ…, ๐‘ˆ, ๐’Ÿ , ๐œ… โ‰ค ๐‘ˆ โˆ’ ๐ฅ(๐’Ÿ' ) โˆ€๐œŒ: assignment, ๐  ๐œŒ โ‰ค ๐‘ˆ โˆ’ ๐ฅ(๐’Ÿ' ) โˆƒ๐‘€%, ๐‘€%% โˆˆ ๐•„(๐œ… + ๐ฅ ๐’Ÿ' , ๐‘ˆ, ๐’Ÿ) s.t. M โŠ‘ ๐‘€% โˆง Val ๐‘ก , ๐‘€, ๐œŒ โŠ‘ Val ๐‘  , ๐‘€%, ๐œŒ M โŠ‘ ๐‘€%% โˆง Val ๐‘ก , ๐‘€โ€ฒโ€ฒ, ๐œŒ โŠ’ Val ๐‘  , ๐‘€, ๐œŒ Theorem is ฮ & (. The proof is induction on ๐’Ÿ'
  24. Consistency proof in ๐‘†N z Corollary PETS is consistent Assume

    ๐’Ÿ โŠข 0 = 1 Let ๐‘ˆ = ๐ฅ ๐’Ÿ , ๐’Ÿ' = ๐’Ÿ, ๐œ… = ๐‘ˆ, ๐‘€: empty frame, ๐œŒ: empty By theorem 2, 0 โŠ‘ 1 Contradiction
  25. Proof strategy Induction on ๐’Ÿ' 1. Case analysis on the

    last rule of ๐’Ÿ' 2. Construct from ๐‘€ to ๐‘€%, ๐‘€โ€ฒโ€ฒ 3. Check the ๐  ๐‘€โ€ฒ , ๐  ๐‘€โ€ฒโ€ฒ โ‰ค ๐  ๐‘€ + ๐ฅ(๐’Ÿ' ) โ† We omit this part Because the theorem 2 is ฮ & (-statement, the proof is carried out in ๐‘†! &
  26. Proof in ๐‘†N z: recursive definition โŠข ๐‘“ 0๐‘ฅ =

    ๐‘”(๐‘ฅ, ๐‘“ ๐‘ฅ ) ๐‘€ ๐‘€โ€ฒโ€ฒ ๐‘€%% ๐‘“ โ‰” ๐‘€ ๐‘“ โˆช {๐‘ฃ โ†ฆ ๐‘€ ๐‘” ๐‘ฃ, ๐‘€ ๐‘“ ๐‘ฃ } where ๐‘ฃ = ๐œŒ(๐‘ฅ) ๐‘€ ๐‘€# = ๐‘€
  27. Proof in ๐‘†N z: transitivity rule ๐‘ก = ๐‘ข ๐‘ข

    = ๐‘  ๐‘ก = ๐‘  ๐‘€ ๐‘€! ๐‘€โ€ฒ ๐‘€ ๐‘€โ€ฒ
  28. Proof in ๐‘†N z : compatibility rule ๐‘ก = ๐‘ข

    ๐‘  ๐‘ก = ๐‘  ๐‘ข ๐‘€ ๐‘€โ€ฒ ๐‘€ ๐‘€โ€ฒ Val ๐‘  ๐‘ก , ๐‘€, ๐œŒ = Val ๐‘  ๐‘ฅ , ๐‘€, ๐œŒ ๐‘ฅ โ†ฆ Val ๐‘ก , ๐‘€, ๐œŒ โŠ‘ Val ๐‘  ๐‘ฅ , ๐‘€, ๐œŒ ๐‘ฅ โ†ฆ Val ๐‘ข , ๐‘€C, ๐œŒ โŠ‘ Val ๐‘  ๐‘ข , ๐‘€C, ๐œŒ
  29. Proof in ๐‘†N z : substitution rule !(#)%&(#) ! '

    %& ' ๐‘€ ๐‘€โ€ฒ ๐‘€ ๐‘€โ€ฒ Val ๐‘ก ๐‘  , ๐‘€, ๐œŒ = Val ๐‘ก ๐‘ฅ , ๐‘€, ๐œŒ ๐‘ฅ โ†ฆ Val ๐‘  , ๐‘€, ๐œŒ โŠ‘ Val ๐‘ข ๐‘ฅ , ๐‘€โ€ฒ, ๐œŒ ๐‘ฅ โ†ฆ Val ๐‘  , ๐‘€, ๐œŒ โŠ‘ Val ๐‘ข ๐‘ฅ , ๐‘€C, ๐œŒ ๐‘ฅ โ†ฆ Val ๐‘  , ๐‘€C, ๐œŒ = Val ๐‘ข ๐‘  , ๐‘€C, ๐œŒ
  30. Instructions A sequence showing how model and assignment is updated

    by passing through a derivation Instruction: โ€ข A ๐‘ก โŸถ ๐‘ข , A ๐‘ก โŸต ๐‘ข for any recursive axiom ๐‘ก = ๐‘ข โ€ข S โ†‘ ๐‘ , โ„ ๐‘ก ๐‘ฅ , S โ†“ ๐‘ , โ„ ๐‘ก ๐‘ฅ , ๐‘ , ๐‘ก: terms, ๐‘ฅ: variable Inst(๐’Ÿ): passing ๐’Ÿ from left to right Inst(๐’Ÿ): passing ๐’Ÿ from right to left ๐‘€%, ๐œŒ% = ฮฆ(๐œŽ, ๐‘€, ๐œŒ): applying ๐œŽ to ๐‘€, ๐œŒ Definition
  31. ๐‘†N O-provable version of main theorem Theorem 4 โˆ€๐’Ÿ :

    derivation, โˆ€๐‘ˆ: integer, ๐‘ˆ โ‰ฅ ๐ฅ ๐’Ÿ โˆ€๐’Ÿ' : sub-derivation of ๐’Ÿ, s. t. ๐’Ÿ' โŠข ๐‘ก = ๐‘ข โˆ€๐‘€' โˆˆ ๐•„ ๐œ…, ๐‘ˆ, ๐’Ÿ , โˆ€๐œŒ' : assign. s. t. ๐œ…, ๐  ๐œŒ' โ‰ค ๐‘ˆ โˆ’ ๐ฅ(๐’Ÿ) โˆ€๐œŽ: seq. instructions, ๐ฅ ๐œŽ โ‰ค ๐‘ˆ โˆ’ ๐ฅ(๐’Ÿ' ) let ๐‘€, ๐œŒ: = ฮฆ ๐œŽ, ๐‘€' , ๐œŒ' . let ๐‘€% = ฮฆ Inst ๐’Ÿ' , ๐‘€, ๐œŒ $ , ๐‘€%% โ‰” ฮฆ Inst ๐’Ÿ' , ๐‘€, ๐œŒ $ Val ๐‘ก , ๐‘€, ๐œŒ โŠ‘ Val ๐‘ข , ๐‘€%, ๐œŒ , Val ๐‘ก , ๐‘€โ€ฒโ€ฒ, ๐œŒ โŠ’ Val ๐‘ข , ๐‘€, ๐œŒ Induction hytothesis (ฮ $ ()
  32. Instruction seq. and its interpretation ๐’Ÿ ๐‘ก = ๐‘ข Inst

    ๐’Ÿ Inst(๐’Ÿ) ๐‘€, ๐œŒ ฮฆ(Inst ๐’Ÿ , ๐‘€, ๐œŒ) ๐‘€, ๐œŒ ฮฆ(Inst(๐’Ÿ), ๐‘€, ๐œŒ)
  33. Instruction seq. for a derivation โŠข ๐‘“(๐‘ก) = ๐‘ข A[๐‘“(๐‘ก)

    โ†’ ๐‘ข] A[๐‘“(๐‘ก) โ† ๐‘ข] ๐‘€, ๐œŒ ๐‘€, ๐œŒ ๐‘€, ๐œŒ ๐‘€% ) โ‰” ๐‘€ ๐‘“ โˆช {๐‘ฃ โ†ฆ ๐‘€ ๐‘” ๐‘ฃ, ๐‘€ ๐‘“ ๐‘ฃ } where ๐‘ฃ = ๐œŒ(๐‘ฅ) ๐‘€โ€ฒ, ๐œŒ
  34. โŠข ๐‘ก = ๐‘ก ๐‘€, ๐œŒ ๐‘€, ๐œŒ The case

    for Inst(๐’Ÿ) is same to Inst(๐’Ÿ) From here, we omit Inst(๐’Ÿ) Instruction seq. for a derivation
  35. ๐‘ก = ๐‘ข ๐‘ข = ๐‘ก ๐‘€โ€ฒ, ๐œŒโ€ฒ ๐‘€, ๐œŒ

    ๐œŽ ๐‘€, ๐œŒ ๐‘€โ€ฒ, ๐œŒโ€ฒ ๐œŽ Instruction seq. for a derivation
  36. ๐‘ก = ๐‘ข ๐‘ข = ๐‘  ๐‘ข = ๐‘  ๐‘€,

    ๐œŒ ๐‘€! , ๐œŒ! ๐‘€" , ๐œŒ" ๐œŽ$ ๐œŽ! ๐‘€, ๐œŒ ๐‘€" , ๐œŒ" ๐œŽ! โˆท ๐œŽ" Instruction seq. for a derivation
  37. ๐‘ก = ๐‘ข ๐‘  ๐‘ก = ๐‘ (๐‘ข) ๐‘€, ๐œŒ ๐‘€โ€ฒ,

    ๐œŒโ€ฒ ๐œŽ ๐‘€, ๐œŒ ๐‘€โ€ฒ, ๐œŒโ€ฒ ๐œŽ Instruction seq. for a derivation
  38. ๐‘ก(๐‘ฅ) = ๐‘ข(๐‘ฅ) ๐‘ก ๐‘  = ๐‘ข(๐‘ ) ๐‘€, ๐œŒ[๐‘ฅ โ†ฆ

    ๐‘ค] ๐‘€โ€ฒ, ๐œŒโ€ฒ ๐œŽ ๐‘€, ๐œŒ ๐‘€#, ๐œŒ# โˆฃ$%& '! โˆ–{*} S โ†‘ ๐‘ก, โ„ ๐‘  ๐‘ฅ :๐œŽ: S โ†“ ๐‘ข, โ„ ๐‘  ๐‘ฅ Instruction seq. for a derivation ๐‘ค: = Val( ๐‘  , ๐‘€, ๐œŒ)
  39. Main lemma ๐‘€ โˆˆ ๐•„ ๐œ…, ๐‘ˆ, ๐’Ÿ , ๐œŒ:

    assign., ๐‘€%, ๐œŒ% = ฮฆ ๐œŽ, ๐‘€, ๐œŒ โ€ข ๐‘€โ€ฒ โˆˆ ๐•„ ๐œ… + ๐ฅ(๐œŽ), ๐‘ˆ, ๐’Ÿ , ๐  ๐œŒ% โ‰ค ๐  ๐œŒ + ๐ฅ(๐œŽ) โ€ข ๐‘€ โŠ‘ ๐‘€% โ€ข ฮฆ ๐œŽ: ๐œ, ๐‘€, ๐œŒ = ฮฆ(๐œŽ, ฮฆ ๐œ, ๐‘€, ๐œŒ ) โ€ข If ๐‘€%, ๐œŒ% = ฮฆ(Inst ๐’Ÿ , ๐‘€, ๐œŒ), then ๐œŒ% = ๐œŒ โ€ข If ๐‘€%%, ๐œŒ%% = ฮฆ Inst ๐’Ÿ , ๐‘€, ๐œŒ , then ๐œŒ%% = ๐œŒ Lemma
  40. Proof in ๐‘†N O By induction on ๐’Ÿ' , prove

    Assume ๐’Ÿ' โŠข ๐‘ก = ๐‘ข for any instr. ๐œŽ, let โ€ข ๐‘€, ๐œŒ = ฮฆ ๐œŽ, ๐‘€' , ๐œŒ' โ€ข ๐‘€%, ๐œŒ = ฮฆ(Inst ๐’Ÿ' , ๐‘€, ๐œŒ) โ€ข ๐‘€%%, ๐œŒ = ฮฆ Inst ๐’Ÿ' , ๐‘€, ๐œŒ Then Val ๐‘ก , ๐‘€, ๐œŒ โŠ‘ Val ๐‘ข , ๐‘€%, ๐œŒ Val ๐‘ก , ๐‘€โ€ฒโ€ฒ, ๐œŒ โŠ’ Val ๐‘ข , ๐‘€, ๐œŒ โˆŽ