Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
個人レベルの位置情報を使ったCOVID19の感染モデル
Search
Yoriyuki Yamagata
March 29, 2022
Research
0
130
個人レベルの位置情報を使ったCOVID19の感染モデル
Yoriyuki Yamagata
March 29, 2022
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
Individual-based epidemiological model of COVID19 using location data
yoriyukiprf
0
120
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
190
On proving consistency of equational theories in bounded arithmetic
yoriyukiprf
0
150
人流データを用いた人流制限解除後のCOVID-19感染状況の推定
yoriyukiprf
0
180
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning
yoriyukiprf
0
180
引用の記述説の擁護
yoriyukiprf
0
240
Consistency proof of fragments of equational systems with substitution in bounded arithmetic
yoriyukiprf
0
130
Concepts on AI Fairness
yoriyukiprf
0
170
Falsification of Cyber Physical System Using Deep Reinforcement Learning
yoriyukiprf
1
170
Other Decks in Research
See All in Research
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
3
960
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
240
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
460
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
120
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
450
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
220
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
390
説明可能な機械学習と数理最適化
kelicht
2
790
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
200
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
480
Featured
See All Featured
The Curse of the Amulet
leimatthew05
0
4.9k
How to make the Groovebox
asonas
2
1.8k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
290
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
How GitHub (no longer) Works
holman
316
140k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
110
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
32
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
57
41k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Test your architecture with Archunit
thirion
1
2.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Transcript
個⼈レベルの位置情報を使っ たCOVID19の感染モデル ⼭形賴之, 鷹⾒俊希, ⼭崎啓介, 井上純, ⼤⻄正輝 国⽴研究開発法⼈ 産業技術総合研究所 2022年3⽉29⽇,
DRIS
モデルの概要 • 50万⼈の位置情報を利⽤ • 感染者と同じ200mx200mに⼊るとある確率で感染する • 感染確率は接触時間を𝑡としたとき𝛽 𝑡 − 𝛼
で決まる • 𝛼と𝛽は時間および地域によらず⼀定のパラメーター • 感染⼒の個⼈差および感染からの経過による変化を考慮
接触時間⾏列 • 𝑑⽇⽬の𝑖番⽬の⼈と𝑗番⽬の⼈の接触時間を𝑀 𝑖, 𝑗 [𝑑]と置く • 𝑀 𝑖, 𝑗
を接触時間⾏列と呼ぶ 𝑖 𝑗 𝑀= 𝑡
接触時間⾏列の求め⽅ • BlogWatcher社提供の位置情報 • 2020年1⽉1⽇から2021年1⽉31⽇、1⽇数百万台の携帯の位置情報 • ⼗分な頻度の位置情報がある50万台の携帯をサンプリング • 残りの⽇本居住者の動きをどう捉えるか?
携帯⼀台に対応する メタポピュレーション 同じメタポピュレーションに 含まれる⼈は他のメタポピュ レーションのメンバーと同じ 接触時間をもつ 4 時間 4 時間
2 時間 2 時間
数学的モデル • 𝑨 𝑑 ~Gamma(𝐷, 𝐷/𝑰 𝑑 ) • 𝑽
𝑑 = ∑!"# $ 𝑔 𝑘 𝑨[𝑑 − 𝑘] • 𝑭 𝑑 = β max(𝑴 𝑑 − α 𝟏, 𝟎) 𝑽[𝑑] • 𝑰 𝑑 + 1 ~ Binomial(𝑆 − 𝑪 𝑑 , 1 − 𝑒%𝑭 ' ) • 𝑪 𝑑 + 1 = 𝑪 𝑑 + 𝑰[𝑑 + 1] 𝐼[𝑖] 𝑑 : 𝑑⽇⽬のメタポピュレーションでの新規感染者数 α, 𝛽:未知パラメータ, 𝐷, 𝑔 𝑘 : 疫学研究による既知定数 𝑆: メタポピュレーションのサイズ
パラメーターチューニング • Ground TruthとしてNHKによる感染者数を⽤いる • 実際の感染者の10%が確定診断されていると仮定 • ⾒かけの曜⽇変動、報告遅れ、診断遅れ、潜伏期間を考慮 • モデルを30回実⾏、結果の平均値をGround
Truthと⽐較 • Lossは負の⼆項分布により与える • チューニングはベイズ最適化を⽤いる
東京 prediction fitted 5530 optimization trials,α= -9.127722, β= 0.000007 観測値
シミュレーション結果 (中央値) シミュレーション結果 (50%区間) シミュレーション結果 (95%区間) シミュレーション結果 (特定サンプル)
東京 prediction fitted 観測値 シミュレーション結果 (中央値) シミュレーション結果 (50%区間) シミュレーション結果 (95%区間)
シミュレーション結果 (特定サンプル) 5511 optimization trials,α= -0.001716, β= 0.001107
まとめと課題 • 複数の波が存在することは再現することができた • 定量的にはずれが⼤きい • 複数解への収束 • 予測は全体に減少傾向を⽰す←→現実には増加傾向