Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ジェネレーティブAI実践入門/20230524
Search
吉田真吾
May 24, 2023
Technology
5
3.5k
ジェネレーティブAI実践入門/20230524
2023.5.24 PE-BANKセミナー AIに乗り遅れないために!!ITエンジニアのための「ジェネレーティブAI」実践入門 で話した資料です。
吉田真吾
May 24, 2023
Tweet
Share
More Decks by 吉田真吾
See All by 吉田真吾
AWS Lambdaと歩んだ“サーバーレス”と今後 #lambda_10years
yoshidashingo
1
120
AOAI Dev Day - Opening Session
yoshidashingo
2
1.5k
LLMアプリにエージェントらしさを組み込む/Build LLM Apps Agentically
yoshidashingo
6
1.3k
マルチエージェントで性能が上がったText-to-SQLのいま/Text-to-SQL
yoshidashingo
2
2.4k
AIエージェントをちゃんと作る/How to build agentic AI
yoshidashingo
5
810
OCI Generative AI Serviceの話/20240222
yoshidashingo
0
100
ChatGPTでちゃんと成果を出していく/20240215
yoshidashingo
3
5.6k
この先を生き残るために!!「生存戦略としてのLLMアプリ開発技術」/20240124_PE-BANK
yoshidashingo
0
100
LangChainとフルサーバーレスですばやくセキュアなRAGアプリをつくるための実践解説/LangChain_Book
yoshidashingo
8
4.1k
Other Decks in Technology
See All in Technology
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
13
4.2k
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
1
640
DatabricksにおけるLLMOpsのベストプラクティス
taka_aki
4
1.6k
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
28k
2024年グライダー曲技世界選手権参加報告/2024 WGAC report
jscseminar
0
230
Team Dynamicsを目指すウイングアーク1stのQAチーム
sadonosake
1
260
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
320
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
640
データ活用促進のためのデータ分析基盤の進化
takumakouno
2
600
Railsで4GBのデカ動画ファイルのアップロードと配信、どう実現する?
asflash8
1
240
Terraform Stacks入門 #HashiTalks
msato
0
290
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
28
12k
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
7
560
Why Our Code Smells
bkeepers
PRO
334
57k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
GitHub's CSS Performance
jonrohan
1030
460k
GraphQLとの向き合い方2022年版
quramy
43
13k
Code Review Best Practice
trishagee
64
17k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
The Invisible Side of Design
smashingmag
297
50k
Done Done
chrislema
181
16k
Transcript
"*ʹΓΕͳ͍ͨΊʹʂʂ *5ΤϯδχΞͷͨΊͷ ʮδΣωϨʔςΟϒ"*ʯ࣮ફೖ αΠμεऔక$50ηΫγϣϯφΠϯදऔక$&0 ٢ాਅޗ
AWS Serverless Hero n p Oracle SA p 113 /
pAWS n ( ) CTO p SaaS ( ) pAWS DevOps n pAWS (2012 ) pAWS Samurai 2014 / 2016 pAWS Serverless Hero AWS AWS Lambda Amazon S3 ChillOutMix
3"( ݕࡧ֦ு 3FUSJFWBM"VHNFOUFE(FOFSBUJPO ʮ$:%"41&01-&ʯʹɺࣾһ͔Βͷ͍߹ΘͤʹࣗಈͰ͑Δ$IBU(15ػೳʮ1&01-&(15ʯΛϦϦʔε https://www.cydas.co.jp/news/press/202304_people-gpt/
͡Ίʹɿੜ"*ͱͳʹ͔ େྔͷςΩετͰτϨʔχϯά͞Εɺจষͷ࣍ͷ୯ޠΛ༧ଌ͢Δେنݴ ޠϞσϧ --. ͳͲΛར༻͢Δɻ "*ͷҰछɻ ੜ"*ͷදతͳྫ ࣗવݴޠੜ /-1
/-( $IBU(15ͷΑ͏ʹɺ͔͋ͨਓ͕ؒੜ͠ ͔ͨͷΑ͏ͳจষΛੜ͢Δٕज़ɻޠاըͷੜɺνϟοτϘο τͱͷରɺ&ϝʔϧͷ࡞ͳͲͷ༻్Ͱར༻Ͱ͖Δ ը૾ੜ ("/ (FOFSBUJWF"EWFSTBM /FUXPSL ͳͲͰೖྗΛݩʹ৽ ͍͠ը૾Λੜ͢Δٕज़ ࣗવݴޠ͔Βը૾Λੜͨ͠Γɺݴޠͱը૾Λੜ͢ΔϚϧνϞʔμ ϧͳϞσϧ͋Δ ج൫ϞσϧͷਐԽ • 5SBOTGPSNFS "UUFOUJPO*T"MM:PV/FFEɿarXiv:1706.03762 ͔Β(15 ·Ͱ • ϩʔΧϧ--.)VHHJOH'BDF $JWJU"* "*Ϟσϧ൛ͷ(JU)VC(JUMBC • ج൫Ϟσϧͷ։ൃʹेԯن͔͔Δ
ʙ044ެ։
4UBCMF%J⒎VTJPOXJUI#SBJO"DUJWJUZ • .3*ͰಘΒΕͨ׆ಈ͔Βը૾Λߴղ૾ʗߴ࣮ੑͰ࠶ߏங Ͱ͖Δख๏ͷݚڀ • ॳظࢹ֮׆ಈ͔Βਪఆ͞ΕΔө૾ใͱߴ࣍ྖ׆ಈ͔ Βਪఆ͞ΕΔ จষ༝དྷ ҙຯಛΛΈ߹Θͤɺ4UBCMF %JGGVTJPO
W Ͱը૾Λ࠶ߏͰ͖Δ͜ͱΛࣔͨ͠ɻ IUUQTTJUFTHPPHMFDPNWJFXTUBCMFEJGGVTJPOXJUICSBJO
$IBU(15ڰۂ ݄ 0QFO"*͕ࣾ$IBU(15ΛϦϦʔε • ରମݧͷੑೳ͕ߴ͍ͱ • िؒˠສϢʔβʔϲ݄ˠԯϢʔβʔ • (15
ԯύϥϝʔλʔ ݄·Ͱ • (PPHMFඇৗࣄଶએݴ • .JDSPTPGU ఏܞ Πϯϑϥఏڙ CJOHͷΈࠐΈ ݄ $IBU(15 "1*ΛϦϦʔε • UFYUEBWJODJͷͷίετͰར༻Ͱ͖Δ HQUUVSCP • CPUΞϓϦͳͲͷϒʔϜ ݄(15ΛϦϦʔε • ஹݸ ࣗশ ͷύϥϝʔλ • ϚϧνϞʔμϧػೳ ςΩετ ը૾ͳͲ ˞ະఏڙ
ʮ"*ͷຽओԽʯͷ࣮ײ ͍͜͠ͱΛษڧ࣮ͯͯ͠͠ར׆༻Λਪਐ͢Δ /άϥϜʜੜ֬𝑃 𝙮⒩ ʜ𝙮ᵧ Ͱʜ3//ʜ("/ʜ5SBOTGPSNFS ˣˣˣ ͑ɺͳΜ͔ศར͔ͩΒͲΜͲΜ͓͏ͬͱ "1*Ͱ$IBU(15ͬͯΈΑ͏ɺձཤྺ3FEJTʹೖΕͯɺϕΫλʔ ԽϑϨʔϜϫʔΫͬͯΕ0,Ͱʙ
ຊͷࣄલΞϯέʔτ • (FO"*ͬͯΔ • Βͳ͍ ˠେৎͰ͢ʂ
ࡾऀࡾ༷ "*.-ΤϯδχΞ • --.ͷΈ࠷৽ใɺຊ൪ӡ༻ʹ͚ͨϊϋνϡʔχϯά ͳͲɺσϦόϦʔʹ͚ͯඞཁͳέΠύϏϦςΟ ΞϓϦέʔγϣϯΤϯδχΞ • --.ٕज़Λ࣮ࡍʹϑϩϯτΤϯυΠϯϑϥ্ʹߏங͠ɺ$*$%ύΠ
ϓϥΠϯʹࡌͤͯܧଓతʹσϦόϦʔ͢ΔͨΊʹඞཁͳέΠύϏϦ ςΟ υϝΠϯΤΩεύʔτ • ֤υϝΠϯͰ༗ޮͳϢʔεέʔεΛݟ͚ͭͯίϯϓϥΠΞϯεɺϓϥΠ όγʔอޢͳͲʹਫ਼௨͍ͯ͠Δ
$IBU(15ͷϞσϧͷֶशํ๏ https://openai.com/blog/chatgpt
ϓϩϯϓτΤϯδχΞϦϯά ੜ"*͔Βదͳग़ྗΛಘΔͨΊʹೖྗ ϓϩϯϓτ Λ࠷దԽ͢ Δख๏ ChatGPT ChatGPT 10
ਂࣜ൚༻ϓϩϯϓτ # : # : 300 # : < URL
> # :
ίʔυੜσόοάͷࣗಈԽ
;FSPTIPUϓϩϯϓςΟϯά • σϞϯετϨʔγϣϯྫΛࣔͣ͞ʹɺࢦ͚ࣔͩνϡʔχϯά ͯ͠తΛୡ͢ΔϓϩϯϓςΟϯά https://www.promptingguide.ai/jp/techniques/zeroshot
;FSPTIPUϓϩϯϓςΟϯά
ϓϩϯϓτΛ͢ΔͱPOͰ͖Δ
'FXTIPUTϓϩϯϓςΟϯά • ϓϩϯϓτͰσϞσʔλΛఏڙͯ͠ɺϞσϧʹจ຺ֶशΛଅ ͯ͠ɺతͷग़ྗΛಘΔํ๏ https://www.promptingguide.ai/jp/techniques/fewshot
'FXTIPUTͷ׆༻
$IBU(15 1SPNQU&OHJOFFSJOHGPS%FWFMPQFST https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
ΞϓϦέʔγϣϯ͔Β $IBU(15Λར༻͢Δ $IBU$PNQMFUJPO"1* &NCFEEJOHT "1*
https://platform.openai.com/docs/api-reference/chat
$IBU$PNQMFUJPO"1* IUUQTQMBUGPSNPQFOBJDPNEPDTHVJEFTDIBUJOUSPEVDUJPO
$IBU(15 1MBZHSPVOE IUUQTQMBUGPSNPQFOBJDPNQMBZHSPVOEQEFGBVMURB NPEFDIBUNPEFMHQUUVSCP
ཤྺԽ .PNFOUP IUUQTDPOTPMFHPNPNFOUPDPN 3FEJTͳͲͷΞϓϦΩϟογϡΛར༻
• OQNΛݻΊͯ-BNCEB-BZFSʹΞοϓϩʔυ͢Δ • खݩͰ • ;JQԽͯ͠"84-BNCEB$POTPMF͔ΒΧελϜϨΠϠʔʹొ • ˞-BNCEBෳͷϨΠϠʔΛઃఆɾల։Ͱ͖ΔͷͰ0QFO"* "1*ผ Ͱొ͓ͯ͘͠
• τʔΫϯɺΩϟογϡ ςʔϒϧ ໊ɺσϑΥϧτ55-ͰॳظԽ 3FEJTΫϥΠΞϯτ൛ Ќ ΛͬͯΈΔ IUUQTHJUIVCDPNNPNFOUPIRNPNFOUPOPEFSFEJTDMJFOU
• ཤྺ͔Βऔಘ • ཤྺ͕͋ΕϢʔβʔίϯςϯπͷલʹૠೖ • ཤྺΛอଘ͢Δ 3FEJTΫϥΠΞϯτ൛ Ќ ΛͬͯΈΔ IUUQTHJUIVCDPNNPNFOUPIRNPNFOUPOPEFSFEJTDMJFOU
υϝΠϯࣝΛ͔͋ͭ͏ΞϓϦͷछྨͷΞϓϩʔν ϓϩϯϓτΤϯδχΞϦϯάʴݕࡧ֦ு 3"( üτʔΫϯ্ݶ ʔ ࣭ ཤྺ˞ඞཁͳ߹ͷΈ ʹྫ͕ऩ·ΔൣғͰ ͋ΕϓϩϯϓτʹྫΛಥͬࠐΜͰղܾՄೳ
ˠ(15·ͰτʔΫϯ 㲈จࣈ ˠ (15 τʔΫϯ 㲈 จࣈ ϑΝΠϯνϡʔχϯά "1*PSϩʔΧϧ--. üϓϩϯϓτख๏ΑΓߴ࣭ͳ݁ՌΛಘ͍ͨ üϓϩϯϓτྫͷྔ͕ϓϩϯϓτʹऩ·Βͳ͍ üϓϩϯϓτΛॖͯ͠τʔΫϯΛઅ͍ͨ͠ ಠࣗ--.ͷߏங
'FXTIPUTͷ׆༻
3"( ݕࡧ֦ு 3FUSJFWBM"VHNFOUFE(FOFSBUJPO ʮ$:%"41&01-&ʯʹɺࣾһ͔Βͷ͍߹ΘͤʹࣗಈͰ͑Δ$IBU(15ػೳʮ1&01-&(15ʯΛϦϦʔε https://www.cydas.co.jp/news/press/202304_people-gpt/
⾃社のFAQをベクターデータ化 ChatGPTで回答に利⽤ ਓࣄ'"2ˍ͍߹ΘͤཤྺΛϕΫλʔσʔλԽ
3"(Y$IBU(15 ਓY • ݄ ޕલ اը ը໘Πϝʔδ •
݄ ޕޙ $IBU(15ཤྺ&NCFEEJOHઆ໌ • /PEFKT.PNFOUP -MBNB*OEFY ˠ -BOH$IBJO+4൛ • υΩϡϝϯτݟͳ͕ΒϖΞϓϩ։࢝ • औకձ"84αϛοτͰதஅ • σϞσʔλ࡞ ࣮Ҏ্ͷ • ݄ ࣮ྃ • ࡞Δ͚ͩͳΒ͘Β͍
&NCσʔλԽ-BOH$IBJOͰཧ IUUQTKTMBOHDIBJODPNEPDTNPEVMFTJOEFYFTUFYU@TQMJUUFSTFYBNQMFTSFDVSTJWF@DIBSBDUFS • 0QFO"*&NCFEEJOHTˠUFYUFNCFEEJOHBEBͰϕΫ λʔม • ϕΫλʔετΞ • ͡Ί )/48-JC
ͰϩʔΧϧอଘ +40/ͷதݟ͍ͨ • εέʔϧΛఆͯ͠ 1JOFDPOFʹࡌͤସ͑ • 3FDVSTJWF$IBSBDUFS5FYU4QMJUUFS • εϓϨουγʔτ$47Λͦͷ··͛ࠐΉͷʹศར • DIVOL4J[F ͱ DIVOL0WFSMBQ Ͳͷ͘Β͍͕దਖ਼ͳͷ͔ʁ • σϑΥϧτ • 'FXTIPUTͰτʔΫϯΛແବʹফඅͨ͘͠ͳ͍ˠ DIVOL4J[FΛখ͘͞ • 2ͱ"͕ߦͰेʹೖΔ ֎ΕΛআ͘ DIVOL4J[F • ్தͰΕͯલޙͷίϯςϯπʹेʹίϯςΩετؚ͕·ΕΔ DIVOL0WFSMBQ • ਖ਼͍͠ͷͰૣΊʹ 1JOFDPOFͰՄมʹ͔͋ͭ͏΄͏͕Α͠
σϞ
ͨ͠ϙΠϯτ • શମ • ؒʹ߹͏͔Θ͔Βͳ͍ͷͰϑϩϯτଆ ݟ͑Δ෦ ͔Β࣮ • ϖΞϓϩɿެࣜυΩϡϝϯτͱʹΒΊͬ͜ •
πʔϧબఆɿΑΓந͕͍΄͏ΛબͿ • CJOH $IBUࢀর࣮ • νϟοτ෦ • 'FXTIPUTͰͷ͍߹Θͤͷޙʹʮؔ࿈࣭ʯฉ͍ͯநग़ • ʮ͏Ұʯͱʮఀࢭʯ • ཤྺ෦ • 4MBDLCPUͰ.PNFOUPͬͯͨͷͰྲྀ༻ • &NCFEEJOHT • ͡ΊϩʔΧϧʹ+40/อଘ
Ԡ༻ʹΉ͚ͯɿϢʔβʔମݧ ˙Α͍ମݧͷ࠷େԽ ü ྑ͍ࣄྫɿ,JOEMFΛىಈͨ͠Βߪಡͯ͠Δͷͷ৽ץ͕Ҋ͞ΕͨΓɺອըΛങͬͨΒࣅͨͪΐ͏Ͳཉ͠ ͍ͱࢥ͑Δॻ੶͕Ϩίϝϯυ͞ΕΔ ü ѱ͍ࣄྫɿ5XJUUFSϝσΟΞͷόφʔʗλʔήοτࠂ ଐੑऔͬͯΔͷʹΰϛ͔Γԡ͚ͭͯ͘͠Δ ˙ྑ͍ମݧͷ࠷େԽ͚ͩͰͳ͍ FYۈଵγεςϜͰ"*Λ׆༻͢Δ߹
❌ମݧͷ࠷େԽɿεϚϗͰλοϓ͔ͭඵͰଧࠁͰ͖Δ͜ͱ ⭕ମݧͷಁ໌Խɿଧࠁ͕ϢʔβʔͷओۀͰͳ͍ɻΦϑΟεʹண͍ͨΓՈͰ1$։͚ͨΒଧࠁ͞ΕΔ͜ͱ ˙छྨͷϢʔβʔମݧ ௧ΈΛղܾ͢ΔϢʔεέʔε ྑ͍ମݧΛ࠷େԽ͢ΔϢʔεέʔε ମݧΛಁ໌Խ͢ΔϢʔεέʔε
ใΛ͍͔ʹΩϟονΞοϓ͢Δ͔ جຊతଶ ܦݧֶशαΠΫϧΛճ͢ ࢀর IUUQTTDIPPKQCJ[DPMVNO ใऩू • ެࣜυΩϡϝϯτɿ$IBU(15ɺ-MBNB*OEFYɺ
-BOH$IBJOɺΫϥυαʔϏεͷυΩϡϝϯτ • "*.-ͷઐՈͷൃ৴ใ ͪΌΜͱͨ͠ઐՈ • ษڧձͷࢀՃ ࣮ફ • దԠͰ͖ΔϢʔεέʔεͷൃݟͱ࣮ફ ;Γ͔͑ΓɾϝϯλϦϯά • ίϛϡχςΟ%JTDPSEͷใڞ༗ɾٞࢀՃ • ઐՈυϝΠϯΤΩεύʔτͱͷର
$IBU(15 0QFO"*ࣾ ͷσʔλอޢϙϦγʔͷ֬ೝ 0QFO"*ࣾͷར༻نͷண • ར༻ن IUUQTPQFOBJDPNQPMJDJFTVTBHFQPMJDJFT • ېࢭߦҝʹ͍ͭͯཧղ͢Δɿҧ๏ߦҝɺࣇಐੑతࡡऔʹ͔͔Δίϯςϯπɺϋϥεϝϯτɺ
ϚϧΣΞ࡞ɺ܉ࣄฌث։ൃͳͲؚΉةݥߦҝɺܦࡁඃͷةݥੑͷߴ͍׆ಈͳͲ 0QFO"*ࣾͷݸਓใอޢํͷண • ݸਓใอޢํ IUUQTPQFOBJDPNQPMJDJFTQSJWBDZQPMJDZ • ϢʔβʔΞΧϯτͱͯ͠ऩू͞ΕΔใ • ࿈བྷઌɺऔҾใɺϩάΠϯใͳͲ 0QFO"*ࣾͷ"1*σʔλར༻ϙϦγʔͷண • "1*σʔλར༻ϙϦγʔ IUUQTPQFOBJDPNQPMJDJFTBQJEBUBVTBHFQPMJDJFT • ೖྗίϯςϯπʹؔ͢Δར༻ϙϦγʔ • "1*Λհ͓ͯ͠٬༷͔Βೖྗ͞ΕͨσʔλΛɺϞσϧͷ܇࿅վྑͷͨΊʹ༻͢Δ͜ͱ͋Γ·ͤΜɻ • "1*Λ௨ͯ͡ૹ৴͞Εͨσʔλɺෆਖ਼༻ɾޡ༻ࢹͷతͰ࠷େؒอ࣋͞Εɺͦͷޙআ͞Ε· ͢ʢ๏ྩͰఆΊΒΕͨ߹Λআ͘ʣɻ • సૹதͷσʔλ҉߸ԽɺถࠃσʔληϯλʔͷΈͷར༻ɺ%1"ରԠͳͲ ※これらは情報提供⽬的のみで記載しています。必ず引⽤元をご確認ください。
None
͚ࣗࣾͷੜ"*ͷར༻ΨΠυϥΠϯ https://www.jdla.org/document/#ai-guideline
͚ࣗࣾͷੜ"*ͷར༻ΨΠυϥΠϯ • ੜ"*ར༻ΨΠυϥΠϯ αΠμεࣾ • +%-"ͷੜ"*ར༻ΨΠυϥΠϯΛςϯϓϨʔ τͱͯ͠࡞ɾެ։ࡁΈʲެ։ʳ • ཁ
͓٬༷ͷݸਓใΛੜ"*ʹೖྗ͠ͳ͍ '"2σʔλͳͲݸਓใҎ֎ͷൿີใ͓ ٬༷͝ͱʹڐՄΛͱ্ͬͨͰར༻͢Δ • ࣮༻্ͷΨʔυϨʔϧߏங • $IBU(15ͷݸਓใɺൿີใͷೖྗېࢭ • 0QFO"* "1*Λ༻͍ͨΫϩʔϯ͓Αͼνϟοτ CPUΛެ։͠ར༻ਪɺೖྗνΣοΫɺϞσ Ϩʔγϣϯ"1*ʹΑΔνΣοΫΛඞਢͱ͢Δ • ʮ"*͕ੜͨ͠Ͱ͋Δ͜ͱʯٴͼɺʮੜ ͷ༰ʹڏِؚ͕·Ε͍ͯΔՄೳੑ͕͋Δ͜ ͱʯΛϢʔβʔʹදࣔ͢Δ
None