Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Real World Type Puzzle and Code Generation
Search
Yuku Kotani
May 11, 2024
Technology
4
850
Real World Type Puzzle and Code Generation
TSKaigi 2024
https://tskaigi.org/
Yuku Kotani
May 11, 2024
Tweet
Share
More Decks by Yuku Kotani
See All by Yuku Kotani
僕が思い描くTypeScriptの未来を勝手に先取りする
yukukotani
11
2.9k
Web技術を駆使してユーザーの画面を「録画」する
yukukotani
14
7.1k
Capacitor製のWebViewアプリからReact Native製のハイブリッドアプリへ
yukukotani
5
1.3k
Kuma UI が提唱する Hybrid Approach CSS-in-JS の仕組み
yukukotani
2
510
GraphQLスキーマ設計の勘所
yukukotani
42
17k
既存Webサービスのモバイルアプリ版を 1週間でリリースし、進化させてきた話
yukukotani
0
710
先を見据えたMVPのフロントエンド開発
yukukotani
0
290
Bundle Side Optimization in Future JavaScript - JSConf JP 2021
yukukotani
2
2.9k
Kotlin/JS の仕組み / How KotlinJS works
yukukotani
5
3.1k
Other Decks in Technology
See All in Technology
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
510
Postman と API セキュリティ / Postman and API Security
yokawasa
0
200
統計データで2024年の クラウド・インフラ動向を眺める
ysknsid25
2
830
DevOps視点でAWS re:invent2024の新サービス・アプデを振り返ってみた
oshanqq
0
180
CustomCopを使ってMongoidのコーディングルールを整えてみた
jinoketani
0
220
Amazon SageMaker Unified Studio(Preview)、Lakehouse と Amazon S3 Tables
ishikawa_satoru
0
150
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
500
AWS re:Invent 2024 ふりかえり
kongmingstrap
0
130
Password-less Journey - パスキーへの移行を見据えたユーザーの準備 @ AXIES 2024
ritou
3
1.4k
非機能品質を作り込むための実践アーキテクチャ
knih
2
610
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
320
Kubeshark で Kubernetes の Traffic を眺めてみよう/Let's Look at k8s Traffic with Kubeshark
kota2and3kan
3
370
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Making Projects Easy
brettharned
116
5.9k
RailsConf 2023
tenderlove
29
940
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
Become a Pro
speakerdeck
PRO
26
5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Docker and Python
trallard
41
3.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
The Pragmatic Product Professional
lauravandoore
32
6.3k
Transcript
Real World and Type Puzzle Code Generation @yukukotani 2024/05/11 -
TSKaigi 2024
小谷 優空 - @yukukotani ・Software Engineer @ Ubie, Inc. (2019/05~)
・Lead Architect ・Maintainer of Kuma UI ・Student @ Univ. Tsukuba (2019/04~) ・情報科学類 自己紹介
趣旨 型安全なコードを吐くコードジェネレータを作る野暮用があった(あるある) → 型安全 + コードジェネレータ = → 観察してエッセンスを抽出しよう! Prisma
観察するスキーマ このスキーマから生成されるコードを観察する User と Post がリレーションを持つ簡単なやつ
型パズルでselectした値に型をつける
None
None
簡略化した実装を観察する これが動くPrismaClient型(findFirst関数)の実装 スキーマに即した型がつく TS Playground
PrismaClient型 実際はクラスとして実装されているが、ここではシンプルなオブジェクト型に
入力の型を得る Type Argument Inferenceによって 型引数Tが推論される
入力の型を得る 型引数の制約は入力時の補完・エラー用。 GetSelectIncludeResultの導出には 条件型を使うので無関係
入力の型を得る 型引数の制約は入力時の補完・エラー用。 GetSelectIncludeResultの導出には 条件型を使うので無関係
出力の型を導出する 続いて出力の型を組成する要素を見ていく
$XxxPayload型 スキーマのモデルと対応して生成される カラムの型や他モデルとのリレーションを表現 → select結果の型を決定するための マスタとして機能 schema.prisma 生成される型
出力の型を導出する 第2型引数には入力の型をそのまま渡す
出力の型を導出する いよいよ出力の型そのものを見ていく
GetSelectIncludeResult<P, A> 事前生成のPayload型(P)とユーザーが渡す引数(A)から、select結果の型を導出
GetSelectIncludeResult<P, A> 条件型 `T extends { foo: infer S }
? S : never`パターンで、selectした中身を取る
GetSelectIncludeResult<P, A> Mapped Types で型を組み立てる
GetSelectIncludeResult<P, A> selectしたキーを Mapped Types のキーとする
GetSelectIncludeResult<P, A> キーに対応する値がfalse等の場合はneverにキャストして除外 Mapped Typesのキーを neverにすると丸ごと消える
GetSelectIncludeResult<P, A> Mapped Typesの値側を見ていく
GetSelectIncludeResult<P, A> Payload型を参照して、selectする値の型を取る
おさらい:$XxxPayload型 select結果の型を決定するためのマスタ schema.prisma 生成される型
GetSelectIncludeResult<P, A> scalarsではなくobjectsの場合も同様に取り、再帰的にselect結果を導出
GetSelectIncludeResult<P, A> 条件型に当てはまらなければneverに落とすが、最初の型制約で先に落ちるはず
まとめ:型パズルのエッセンス 型パズルを要素分解すると組み立てやすq Uf 型引数の推論によって入力の型を得 Df 型引数の制約を につけ E インターナルな型引数は補完不要なので頑張らなくて良q Bf
入力の型を条件型で絞り込みながら出力の型を組み立て E 事前生成したマスタ型(Payload)を参照してシンプル化 入力時の補完・エラーのため
型パズルをできるだけ頑張らない
なるべく事前生成して型計算を避ける Payload型から型パズルで導出できそうだが 重複を許容してすべて静的にコード生成する
なるべく事前生成して型計算を避ける モデルの一般化もせず重複生成
なるべく事前生成して型計算を避ける 事前生成ファイルは基本編集しないので、パースコストの影響が限定的 → ファイルサイズが大きくなってもOK 型チェックはfindFirstとかを触るたびに発生する(tsc内部でキャッシュは効くが) → パフォーマンスがDXに直撃する さらにビルド時間でもパースに比べて型チェックのほうが影響が大きい prisma/prisma の
tsc trace パース時間 型チェック時間
なるべく事前生成して型計算を避ける リアルタイムな入力に対してフィードバックしたい部分に絞って型計算をする その他はできるだけ静的にコード生成する
コード生成もできるだけ頑張らない
None
None
コード生成するコードは基本的につらい テンプレートリテラルなりASTビルダなりで組み立てるので見通しは最悪 なるべく生成するパターンを減らしたい
ライブラリとして切り出す 生成するコードのうち静的な部分はライブラリに切り出して、 生成コードからは参照するだけ 生成したコード
ライブラリとして切り出す Tips: ライブラリ内で使っているinternalな型もすべてexportする exportしていないと、この型を参照する他パッケージの.d.tsに インライン化されて爆発する Ref: https://github.com/prisma/prisma/blob/main /packages/client/src/runtime/core/types/exported/README.md
型以外は生成しない 生成された .d.ts 3500行に対して .js は200行程度 コード生成で頑張るのではなく Proxy を使った動的操作をしている
まとめ H リアルタイムな入力にフィードバックしたい部分だけは型パズルを頑張5 H 型パズルを要素分解して順番に考えるとやりやすF H それ以外はコードの重複を許容して事前生成に振り切5 H 完全に静的な型は生成すらせずライブラリÆ H
型以外のランタイム処理はProxyで頑張る
Thanks! Ubieのブースにいます!