Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Generating Sentences from a Continuous Space
Search
Yumeto Inaoka
May 11, 2018
Research
0
360
文献紹介: Generating Sentences from a Continuous Space
2018/05/11の文献紹介で発表
Yumeto Inaoka
May 11, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
290
単施設でできる臨床研究の考え方
shuntaros
0
3.1k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
270
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
400
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
3
1.3k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
510
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
110
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
650
超高速データサイエンス
matsui_528
1
170
IMC の細かすぎる話 2025
smly
2
710
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Embracing the Ebb and Flow
colly
88
4.9k
Six Lessons from altMBA
skipperchong
29
4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Code Reviewing Like a Champion
maltzj
526
40k
A designer walks into a library…
pauljervisheath
209
24k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Done Done
chrislema
185
16k
What's in a price? How to price your products and services
michaelherold
246
12k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
140
Designing for Performance
lara
610
69k
Transcript
Generating Sentences from a Continuous Space Samuel R. Bowman, Luke
Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz & Samy Bengio. Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 10–21, 2016. 文献紹介 2018/05/11 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Abstract •文全体の分散表現を組込んだRNNベースの Variational AutoEncoderに関する研究 •スタイル、話題、構文的特徴などの文全体の特徴をモデル化 •文間の潜在空間の経路を調べることで、その間にある文を 新たに生成することができる !2
Abstract •提案モデルを学習させる際の問題を解決する手法の提案 •欠落した語を復元させる効果を実証 •文の潜在空間について興味深い特性について調査 •提案モデルを言語モデルとして使用することについて 否定的な結果を提示 !3
Introduction •RNNLMは状態に基づいて文を単語毎に生成 ← トピックや構文的特徴など文全体の特徴を解釈可能な 状態で出力しない •Variational AutoEncoderの構造を用いたモデルに 実用的な訓練手法を利用 → 文全体の特徴を連続潜在変数として捕捉
!4
Unsupervised sentence encoding •Sequence AutoEncoder → 中間の表現からは妥当な文が出力できない •Skip-thought model •Paragraph
Vector !5
Variational AutoEncoder •潜在変数を確率分布に落とし込んだモデル •潜在変数を単一の点としてではなく潜在空間の領域と なるように学習 → 一般にはガウス分布になるよう近づける •学習では真の分布とEncoderの分布のKL divergenceと 入出力の差を損失としてそれを小さくする
!6
VAE for sentences •single-layer LSTMをencoder, decoderに用いる テキストのVAEを提案 !7
Optimization •非ゼロなKL-divergence項と小さなcross entropyを 持つようなエンコーダが理想的 •普通の実装ではKL-divergence項は0になる •KL cost annealingを用いる !8
Optimization •エンコーダに対して強いデコーダを弱めるために Word dropout and historyless decodingを行う •入力系列の単語を確率的にUNKに置換 !9
Experiments (Language Modeling) •Penn Treebankを用いて言語モデルを学習 •NLLとPPLで評価 •VAEの方が悪い結果であるが、Inputless Decoderでは KL lossを含めても性能が向上
!10
Experiments (Imputing missing words) •VAEは欠落語の入力に適している !11
Impact of word dropout •100% word keepでは典型的な文が出力 0% word keepでは文法的でない文が出力
!12
Sampling from the posterior •エンコーダの出力分布の平均、3つのサンプルをデコード •文長とトピックは捉えられている •文が長くなると出力は多様になる !13
Homotopies •variationalの方が中間の文が 文法的でトピックが一貫する !14
Conclusion •自然言語文にVAEを使用する方法の提案 •提案モデルによる欠落語の復元の効果を示した •潜在変数間のサンプリングから一貫性のある多様な文を 生成できることを示した !15