$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Generating Sentences from a Continuous Space
Search
Yumeto Inaoka
May 11, 2018
Research
0
360
文献紹介: Generating Sentences from a Continuous Space
2018/05/11の文献紹介で発表
Yumeto Inaoka
May 11, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
900
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
220
POI: Proof of Identity
katsyoshi
0
120
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
240
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
720
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
630
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
140
CoRL2025速報
rpc
3
3.6k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.2k
Featured
See All Featured
Technical Leadership for Architectural Decision Making
baasie
0
180
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
25
HDC tutorial
michielstock
0
260
Ruling the World: When Life Gets Gamed
codingconduct
0
94
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
23
Writing Fast Ruby
sferik
630
62k
Ethics towards AI in product and experience design
skipperchong
1
140
Being A Developer After 40
akosma
91
590k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
750
The agentic SEO stack - context over prompts
schlessera
0
550
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
Generating Sentences from a Continuous Space Samuel R. Bowman, Luke
Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz & Samy Bengio. Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 10–21, 2016. 文献紹介 2018/05/11 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Abstract •文全体の分散表現を組込んだRNNベースの Variational AutoEncoderに関する研究 •スタイル、話題、構文的特徴などの文全体の特徴をモデル化 •文間の潜在空間の経路を調べることで、その間にある文を 新たに生成することができる !2
Abstract •提案モデルを学習させる際の問題を解決する手法の提案 •欠落した語を復元させる効果を実証 •文の潜在空間について興味深い特性について調査 •提案モデルを言語モデルとして使用することについて 否定的な結果を提示 !3
Introduction •RNNLMは状態に基づいて文を単語毎に生成 ← トピックや構文的特徴など文全体の特徴を解釈可能な 状態で出力しない •Variational AutoEncoderの構造を用いたモデルに 実用的な訓練手法を利用 → 文全体の特徴を連続潜在変数として捕捉
!4
Unsupervised sentence encoding •Sequence AutoEncoder → 中間の表現からは妥当な文が出力できない •Skip-thought model •Paragraph
Vector !5
Variational AutoEncoder •潜在変数を確率分布に落とし込んだモデル •潜在変数を単一の点としてではなく潜在空間の領域と なるように学習 → 一般にはガウス分布になるよう近づける •学習では真の分布とEncoderの分布のKL divergenceと 入出力の差を損失としてそれを小さくする
!6
VAE for sentences •single-layer LSTMをencoder, decoderに用いる テキストのVAEを提案 !7
Optimization •非ゼロなKL-divergence項と小さなcross entropyを 持つようなエンコーダが理想的 •普通の実装ではKL-divergence項は0になる •KL cost annealingを用いる !8
Optimization •エンコーダに対して強いデコーダを弱めるために Word dropout and historyless decodingを行う •入力系列の単語を確率的にUNKに置換 !9
Experiments (Language Modeling) •Penn Treebankを用いて言語モデルを学習 •NLLとPPLで評価 •VAEの方が悪い結果であるが、Inputless Decoderでは KL lossを含めても性能が向上
!10
Experiments (Imputing missing words) •VAEは欠落語の入力に適している !11
Impact of word dropout •100% word keepでは典型的な文が出力 0% word keepでは文法的でない文が出力
!12
Sampling from the posterior •エンコーダの出力分布の平均、3つのサンプルをデコード •文長とトピックは捉えられている •文が長くなると出力は多様になる !13
Homotopies •variationalの方が中間の文が 文法的でトピックが一貫する !14
Conclusion •自然言語文にVAEを使用する方法の提案 •提案モデルによる欠落語の復元の効果を示した •潜在変数間のサンプリングから一貫性のある多様な文を 生成できることを示した !15