Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Generating Sentences from a Continuous Space
Search
Yumeto Inaoka
May 11, 2018
Research
0
360
文献紹介: Generating Sentences from a Continuous Space
2018/05/11の文献紹介で発表
Yumeto Inaoka
May 11, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
360
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
520
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.5k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
440
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
11
6.4k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
340
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
300
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
410
CVPR2025論文紹介:Unboxed
murakawatakuya
0
230
snlp2025_prevent_llm_spikes
takase
0
420
Featured
See All Featured
From π to Pie charts
rasagy
0
86
Building an army of robots
kneath
306
46k
GitHub's CSS Performance
jonrohan
1032
470k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
23
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
61
Amusing Abliteration
ianozsvald
0
63
Balancing Empowerment & Direction
lara
5
810
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Transcript
Generating Sentences from a Continuous Space Samuel R. Bowman, Luke
Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz & Samy Bengio. Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL), pages 10–21, 2016. 文献紹介 2018/05/11 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Abstract •文全体の分散表現を組込んだRNNベースの Variational AutoEncoderに関する研究 •スタイル、話題、構文的特徴などの文全体の特徴をモデル化 •文間の潜在空間の経路を調べることで、その間にある文を 新たに生成することができる !2
Abstract •提案モデルを学習させる際の問題を解決する手法の提案 •欠落した語を復元させる効果を実証 •文の潜在空間について興味深い特性について調査 •提案モデルを言語モデルとして使用することについて 否定的な結果を提示 !3
Introduction •RNNLMは状態に基づいて文を単語毎に生成 ← トピックや構文的特徴など文全体の特徴を解釈可能な 状態で出力しない •Variational AutoEncoderの構造を用いたモデルに 実用的な訓練手法を利用 → 文全体の特徴を連続潜在変数として捕捉
!4
Unsupervised sentence encoding •Sequence AutoEncoder → 中間の表現からは妥当な文が出力できない •Skip-thought model •Paragraph
Vector !5
Variational AutoEncoder •潜在変数を確率分布に落とし込んだモデル •潜在変数を単一の点としてではなく潜在空間の領域と なるように学習 → 一般にはガウス分布になるよう近づける •学習では真の分布とEncoderの分布のKL divergenceと 入出力の差を損失としてそれを小さくする
!6
VAE for sentences •single-layer LSTMをencoder, decoderに用いる テキストのVAEを提案 !7
Optimization •非ゼロなKL-divergence項と小さなcross entropyを 持つようなエンコーダが理想的 •普通の実装ではKL-divergence項は0になる •KL cost annealingを用いる !8
Optimization •エンコーダに対して強いデコーダを弱めるために Word dropout and historyless decodingを行う •入力系列の単語を確率的にUNKに置換 !9
Experiments (Language Modeling) •Penn Treebankを用いて言語モデルを学習 •NLLとPPLで評価 •VAEの方が悪い結果であるが、Inputless Decoderでは KL lossを含めても性能が向上
!10
Experiments (Imputing missing words) •VAEは欠落語の入力に適している !11
Impact of word dropout •100% word keepでは典型的な文が出力 0% word keepでは文法的でない文が出力
!12
Sampling from the posterior •エンコーダの出力分布の平均、3つのサンプルをデコード •文長とトピックは捉えられている •文が長くなると出力は多様になる !13
Homotopies •variationalの方が中間の文が 文法的でトピックが一貫する !14
Conclusion •自然言語文にVAEを使用する方法の提案 •提案モデルによる欠落語の復元の効果を示した •潜在変数間のサンプリングから一貫性のある多様な文を 生成できることを示した !15