Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
言語処理学会第25回年次大会参加報告
Search
Yumeto Inaoka
March 19, 2019
Research
1
100
言語処理学会第25回年次大会参加報告
2019/03/19の年次大会報告会で発表
Yumeto Inaoka
March 19, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Research
See All in Research
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
470
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
260
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
360
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
590
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
270
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.1k
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
160
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
380
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
240
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
290
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
170
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Unsuck your backbone
ammeep
671
58k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
A Modern Web Designer's Workflow
chriscoyier
697
190k
BBQ
matthewcrist
89
9.9k
Agile that works and the tools we love
rasmusluckow
331
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
The Pragmatic Product Professional
lauravandoore
37
7k
Transcript
言語処理学会 第25回年次大会 参加報告 2019/03/19 長岡技術科学大学 自然言語処理研究室 修士課程 稲岡 夢人
発表内容 • タイトル 日本語文法平易化コーパスの構築 • 概要 在留外国人数の増加に伴って「やさしい日本語」の考え方が重 要性を増している。一方で言語処理においては、自動平易化を 対象とした研究が行われている。本研究では、やさしい日本語 のための文法平易化に用いることを想定したコーパスをクラウ
ドソーシングによって構築した。またコーパスで見られる書き 換えの現象について分析を行った。
質疑応答 (1/3) • 日本語学校では「みんなの日本語」を教材として用いているが、 そのような教材を参考にして作られているのか? → 本研究は日本語学校に通っていない(通えない)方を対象に 含めているので、そのような教材より初歩的と考えている • 中国語を母語とする方にとっては和語より漢語の方が分かる
(「市役所の開く時間」より「開庁時間」の方がわかる) → 本研究は特定の母語を想定していないが、どんな日本語表現 が易しいかは母語によって変化するというのは意識できてい なかった
質疑応答 (2/3) • 用途を考えると、田中コーパスではなく外国人が読むような テキストを含むコーパスを元に作成するべきなのでは? → 本研究室で過去に構築した平易化コーパスとの対応を取り たかったので田中コーパスを利用したが、今後拡張を行う のであればそれも視野に入れたいと考えている •
書き換えによって主語が無くなっているが、主語がない日本語 表現は外国人にとって難しいのでは? → 指摘の通りであるが、現状では考慮できていないので、 今後の課題とさせていただきたい
質疑応答 (3/3) • ブラジル人の多い群馬県大泉町や、インド人の多い東京都葛西 の自治体なら詳しいかもしれない • 機械翻訳の前処理に使えば翻訳性能を向上させられないか? → 日本語ではないが、過去にそのような研究は行われており、 効果があることが示されているので、期待できると考える
他にも多くのご指摘、アドバイス等をありがとうございます
発表の紹介 • P6-10 藤井 真, 新納 浩幸, 古宮 嘉那子 「文の持つ情報量を用いたニューラル機械翻訳の訳抜け検出」
• P5-12 安井 豪, 鶴岡 慶雅, 永田 昌明 「意味的類似性を報酬とした強化学習による文生成」
文の持つ情報量を用いたニューラル 機械翻訳の訳抜け検出 • 翻訳前と翻訳後の情報量を比較し、半分以下に低下していた 場合に訳抜けとして検出する手法 • Google NMTの結果に対して適合率を計算して評価している • モデル自体を変化させず、また内部状態を使用していないので、
あらゆるニューラル機械翻訳に対して適用できる • 目的言語を全く知らない人が機械翻訳を使用する際に有用
意味的類似性を報酬とした強化学習に よる文生成 • ニューラル生成では損失関数にCross-entropyが使われる → 単語の並べ替えや文構造の変化が損失に大きく影響を与える • BERT*を意味的類似性でFine-tuningしたものを使用して、 意味的類似性を報酬として、生成モデルを強化学習する →
意味を考慮した学習が行える • De → EnのBLEUで効果を確認 *Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT (arXiv:1810.04805 [cs]) 2019.
BERTに関する発表 • 原稿に「BERT」を含む発表:21件 (約5.3%) • 今後、Pre-trained Embeddingsと同じ立ち位置になる? 50% 45% 5%
関連研究・今後の課題 使用 BERTの改善