Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
言語処理学会第25回年次大会参加報告
Search
Yumeto Inaoka
March 19, 2019
Research
1
110
言語処理学会第25回年次大会参加報告
2019/03/19の年次大会報告会で発表
Yumeto Inaoka
March 19, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
370
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Research
See All in Research
20年前に50代だった人たちの今
hysmrk
0
110
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
310
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
530
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
170
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
310
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
290
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
110
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
120
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
480
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
160
Featured
See All Featured
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
93
Unsuck your backbone
ammeep
671
58k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
79
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
76
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Visualization
eitanlees
150
16k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Skip the Path - Find Your Career Trail
mkilby
0
39
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Accessibility Awareness
sabderemane
0
33
Darren the Foodie - Storyboard
khoart
PRO
2
2.1k
Transcript
言語処理学会 第25回年次大会 参加報告 2019/03/19 長岡技術科学大学 自然言語処理研究室 修士課程 稲岡 夢人
発表内容 • タイトル 日本語文法平易化コーパスの構築 • 概要 在留外国人数の増加に伴って「やさしい日本語」の考え方が重 要性を増している。一方で言語処理においては、自動平易化を 対象とした研究が行われている。本研究では、やさしい日本語 のための文法平易化に用いることを想定したコーパスをクラウ
ドソーシングによって構築した。またコーパスで見られる書き 換えの現象について分析を行った。
質疑応答 (1/3) • 日本語学校では「みんなの日本語」を教材として用いているが、 そのような教材を参考にして作られているのか? → 本研究は日本語学校に通っていない(通えない)方を対象に 含めているので、そのような教材より初歩的と考えている • 中国語を母語とする方にとっては和語より漢語の方が分かる
(「市役所の開く時間」より「開庁時間」の方がわかる) → 本研究は特定の母語を想定していないが、どんな日本語表現 が易しいかは母語によって変化するというのは意識できてい なかった
質疑応答 (2/3) • 用途を考えると、田中コーパスではなく外国人が読むような テキストを含むコーパスを元に作成するべきなのでは? → 本研究室で過去に構築した平易化コーパスとの対応を取り たかったので田中コーパスを利用したが、今後拡張を行う のであればそれも視野に入れたいと考えている •
書き換えによって主語が無くなっているが、主語がない日本語 表現は外国人にとって難しいのでは? → 指摘の通りであるが、現状では考慮できていないので、 今後の課題とさせていただきたい
質疑応答 (3/3) • ブラジル人の多い群馬県大泉町や、インド人の多い東京都葛西 の自治体なら詳しいかもしれない • 機械翻訳の前処理に使えば翻訳性能を向上させられないか? → 日本語ではないが、過去にそのような研究は行われており、 効果があることが示されているので、期待できると考える
他にも多くのご指摘、アドバイス等をありがとうございます
発表の紹介 • P6-10 藤井 真, 新納 浩幸, 古宮 嘉那子 「文の持つ情報量を用いたニューラル機械翻訳の訳抜け検出」
• P5-12 安井 豪, 鶴岡 慶雅, 永田 昌明 「意味的類似性を報酬とした強化学習による文生成」
文の持つ情報量を用いたニューラル 機械翻訳の訳抜け検出 • 翻訳前と翻訳後の情報量を比較し、半分以下に低下していた 場合に訳抜けとして検出する手法 • Google NMTの結果に対して適合率を計算して評価している • モデル自体を変化させず、また内部状態を使用していないので、
あらゆるニューラル機械翻訳に対して適用できる • 目的言語を全く知らない人が機械翻訳を使用する際に有用
意味的類似性を報酬とした強化学習に よる文生成 • ニューラル生成では損失関数にCross-entropyが使われる → 単語の並べ替えや文構造の変化が損失に大きく影響を与える • BERT*を意味的類似性でFine-tuningしたものを使用して、 意味的類似性を報酬として、生成モデルを強化学習する →
意味を考慮した学習が行える • De → EnのBLEUで効果を確認 *Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT (arXiv:1810.04805 [cs]) 2019.
BERTに関する発表 • 原稿に「BERT」を含む発表:21件 (約5.3%) • 今後、Pre-trained Embeddingsと同じ立ち位置になる? 50% 45% 5%
関連研究・今後の課題 使用 BERTの改善