Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTのアルゴリズム
Search
Yunosuke Yamada
March 03, 2023
Technology
0
400
ChatGPTのアルゴリズム
ニューラルネット系自然言語処理の歴史を、アルゴリズムも紹介しながら単純パーセプトロンからChatGPTに至るまで辿る
Yunosuke Yamada
March 03, 2023
Tweet
Share
More Decks by Yunosuke Yamada
See All by Yunosuke Yamada
Gemini CLIでもセキュアで堅牢な開発をしたい!
yunosukey
1
330
DevOps/MLOpsに学ぶエージェントの可観測性
yunosukey
1
880
Agent Development Kitで作るマルチエージェントアプリケーション(AIAgent勉強会)
yunosukey
4
1.4k
Agent Development Kitで作るマルチエージェントアプリケーション(GCNT2025)
yunosukey
0
43
AIエージェントのオブザーバビリティについて
yunosukey
1
810
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
2
830
クラウド開発環境Cloud Workstationsの紹介
yunosukey
0
380
フロントエンドオブザーバビリティ on Google Cloud
yunosukey
1
320
React and XSS
yunosukey
0
350
Other Decks in Technology
See All in Technology
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
100
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
280
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
2k
Claude Codeを使った情報整理術
knishioka
14
10k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
200
MySQLのSpatial(GIS)機能をもっと充実させたい ~ MyNA望年会2025LT
sakaik
0
140
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
110
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
520
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
360
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
230
Featured
See All Featured
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
AI: The stuff that nobody shows you
jnunemaker
PRO
1
29
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
Visualization
eitanlees
150
16k
[SF Ruby Conf 2025] Rails X
palkan
0
640
Information Architects: The Missing Link in Design Systems
soysaucechin
0
720
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Transcript
ニューラルネットの誕生から ChatGPTまで 山田悠之介 2023/03/03
概要 目次 • 前半:ニューラルネットワークについて • 後半:自然言語処理とニューラルネット • 数式を使わずにできるだけアナロジーで説明 • 用語はちゃんと使う
2
保険 • 自分が勉強したのは学部3年の時 ◦ 5年前、2017年 ◦ ChatGPTの元になる論文:2017年 • 理論まで理解していたのは基礎的な内容 (ニューラルネットの話)
• 後半になるについて「らしい」が増えていきます 3
ニューラルネットワーク (NN) 4
単純パーセプトロン(50、60年代) • ≒1つの神経細胞をモデル化 • いい感じに学習(重みの更新)させることで線形分離可能な問題を解ける ◦ 「線形分離可能な問題」:平面を線で区切る、3次元を面で区切る • そうでない問題は解けない... ◦
下火に 5
多層パーセプトロン(80年代) • さっきの神経細胞を繋げていく • シナプス伝達のモデル化 • 重みの更新は出力側から入力側に伝播させる(誤差逆伝播) • 中間層のおかげで線形分離可能でなくても識別できる •
中間層を増やすにはマシンパワーが... ◦ 再び下火に 6
深層学習(2000年代) • マシンパワーが改善されたことで階層が深くても学習できるように • そして新しい問題が ◦ 局所最適解 ◦ 勾配の消失 7
局所最適解 • 学習は山登りに例えられる ◦ 今いる地点の傾き(勾配)を見て、上にいく(勾配法) • 逆に今いる地点しか見れないので、周りを見るともっと高い山があるのに、 手近な頂上を目指してしまう(局所最適解) ◦ 初めのうちは気まぐれで
上以外の方向に進んでみる (確率的勾配降下法) ◦ でも結局、間違った答えを 出すことはある 8
勾配の消失 • 上の方に進んでいきたいが、傾きが0だとどっちに行けば良いか分からない ◦ 学習が止まる • 誤差は逆伝播させていくので、より出力側で勾配が0になると、 入力側も学習が止まる ◦ 勾配の消失
• 階層が深くなると発生しやすくなる ◦ いろんな対応がある 9
自然言語処理(NLP)とNN 10
RNN (Recurrent neural network) • ネットワーク内で循環があるもの • 再帰的な構造のおかげで過去の状態、文脈を考慮できると言われている ◦ NLPへの応用
• 一方でうまくいっていない部分も ◦ 長期的な依存関係の学習 ◦ 勾配消失問題の発生 11
LSTM (Long short-term memory) • 長期記憶と短期記憶のモデル化 • RNNの問題点改善のため • ユニットとしてパーセプトロンではなく、
記憶の保持と忘却ができるものを利用? 12
Encoder-DecoderモデルとSeq2Seq • Encoder-Decoderモデル ◦ 入力をエンコーダで中間表現に変換してからデコーダで出力する • Seq2Seq (2014) ◦ Encoder-Decoderモデルのうち、入出力が系列になっているもの
◦ エンコーダ、デコーダにはRNN(LSTM)が使われる 13
Seq2Seq with Attention (2015) • Seq2Seqはエンコーダからデコーダに渡る情報が少なかったため、 精度が良くなかった • 改善のためAttentionが導入 ◦
2つの文章中の単語のペアに対して、 どのペアが重要か ◦ 異なる文章:Source-Target Attention ◦ 同じ文章 :Self Attention ◦ 長い文でも単語の関係をとらえやすくなった 14
Transformer (2017) • Attentionに注目 • Encoder-Decoderモデルだが RNN、LSTMを使わない • エンコーダ、デコーダには NNを6段ずつ使う
• 精度が良く、学習も並列でできる • Google翻訳もこのアルゴリズム 15
GPT (Generative Pre-trained Transformer) • Transformerの1種 • 教師あり学習するには、人力でデータを用意する必要 • 精度を上げるにはデータは多いほど良いが、大変(無理なこともある)
• 教師なしでの事前学習を採用し、その後用途別の調整 • GPT-3では570GBの文章で事前学習 ◦ GPT-3.5: GPT-3に編集と挿入機能を持たせる ◦ ChatGPT: GPT-3.5に対して微調整したもの 16
終わり 17