Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTのアルゴリズム
Search
Yunosuke Yamada
March 03, 2023
Technology
0
410
ChatGPTのアルゴリズム
ニューラルネット系自然言語処理の歴史を、アルゴリズムも紹介しながら単純パーセプトロンからChatGPTに至るまで辿る
Yunosuke Yamada
March 03, 2023
Tweet
Share
More Decks by Yunosuke Yamada
See All by Yunosuke Yamada
AI時代に成長するエンジニアに必要なスキルとは.pdf
yunosukey
0
60
Gemini CLIでもセキュアで堅牢な開発をしたい!
yunosukey
1
380
DevOps/MLOpsに学ぶエージェントの可観測性
yunosukey
1
930
Agent Development Kitで作るマルチエージェントアプリケーション(AIAgent勉強会)
yunosukey
4
1.5k
Agent Development Kitで作るマルチエージェントアプリケーション(GCNT2025)
yunosukey
0
48
AIエージェントのオブザーバビリティについて
yunosukey
1
820
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
2
870
クラウド開発環境Cloud Workstationsの紹介
yunosukey
0
400
フロントエンドオブザーバビリティ on Google Cloud
yunosukey
1
330
Other Decks in Technology
See All in Technology
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
190
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
420
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
4.8k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
What happened to RubyGems and what can we learn?
mikemcquaid
0
240
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.1k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
390
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
420
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
120
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
530
使いにくいの壁を突破する
sansantech
PRO
1
110
Featured
See All Featured
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
670
Side Projects
sachag
455
43k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
97
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
BBQ
matthewcrist
89
10k
Building Adaptive Systems
keathley
44
2.9k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
310
Transcript
ニューラルネットの誕生から ChatGPTまで 山田悠之介 2023/03/03
概要 目次 • 前半:ニューラルネットワークについて • 後半:自然言語処理とニューラルネット • 数式を使わずにできるだけアナロジーで説明 • 用語はちゃんと使う
2
保険 • 自分が勉強したのは学部3年の時 ◦ 5年前、2017年 ◦ ChatGPTの元になる論文:2017年 • 理論まで理解していたのは基礎的な内容 (ニューラルネットの話)
• 後半になるについて「らしい」が増えていきます 3
ニューラルネットワーク (NN) 4
単純パーセプトロン(50、60年代) • ≒1つの神経細胞をモデル化 • いい感じに学習(重みの更新)させることで線形分離可能な問題を解ける ◦ 「線形分離可能な問題」:平面を線で区切る、3次元を面で区切る • そうでない問題は解けない... ◦
下火に 5
多層パーセプトロン(80年代) • さっきの神経細胞を繋げていく • シナプス伝達のモデル化 • 重みの更新は出力側から入力側に伝播させる(誤差逆伝播) • 中間層のおかげで線形分離可能でなくても識別できる •
中間層を増やすにはマシンパワーが... ◦ 再び下火に 6
深層学習(2000年代) • マシンパワーが改善されたことで階層が深くても学習できるように • そして新しい問題が ◦ 局所最適解 ◦ 勾配の消失 7
局所最適解 • 学習は山登りに例えられる ◦ 今いる地点の傾き(勾配)を見て、上にいく(勾配法) • 逆に今いる地点しか見れないので、周りを見るともっと高い山があるのに、 手近な頂上を目指してしまう(局所最適解) ◦ 初めのうちは気まぐれで
上以外の方向に進んでみる (確率的勾配降下法) ◦ でも結局、間違った答えを 出すことはある 8
勾配の消失 • 上の方に進んでいきたいが、傾きが0だとどっちに行けば良いか分からない ◦ 学習が止まる • 誤差は逆伝播させていくので、より出力側で勾配が0になると、 入力側も学習が止まる ◦ 勾配の消失
• 階層が深くなると発生しやすくなる ◦ いろんな対応がある 9
自然言語処理(NLP)とNN 10
RNN (Recurrent neural network) • ネットワーク内で循環があるもの • 再帰的な構造のおかげで過去の状態、文脈を考慮できると言われている ◦ NLPへの応用
• 一方でうまくいっていない部分も ◦ 長期的な依存関係の学習 ◦ 勾配消失問題の発生 11
LSTM (Long short-term memory) • 長期記憶と短期記憶のモデル化 • RNNの問題点改善のため • ユニットとしてパーセプトロンではなく、
記憶の保持と忘却ができるものを利用? 12
Encoder-DecoderモデルとSeq2Seq • Encoder-Decoderモデル ◦ 入力をエンコーダで中間表現に変換してからデコーダで出力する • Seq2Seq (2014) ◦ Encoder-Decoderモデルのうち、入出力が系列になっているもの
◦ エンコーダ、デコーダにはRNN(LSTM)が使われる 13
Seq2Seq with Attention (2015) • Seq2Seqはエンコーダからデコーダに渡る情報が少なかったため、 精度が良くなかった • 改善のためAttentionが導入 ◦
2つの文章中の単語のペアに対して、 どのペアが重要か ◦ 異なる文章:Source-Target Attention ◦ 同じ文章 :Self Attention ◦ 長い文でも単語の関係をとらえやすくなった 14
Transformer (2017) • Attentionに注目 • Encoder-Decoderモデルだが RNN、LSTMを使わない • エンコーダ、デコーダには NNを6段ずつ使う
• 精度が良く、学習も並列でできる • Google翻訳もこのアルゴリズム 15
GPT (Generative Pre-trained Transformer) • Transformerの1種 • 教師あり学習するには、人力でデータを用意する必要 • 精度を上げるにはデータは多いほど良いが、大変(無理なこともある)
• 教師なしでの事前学習を採用し、その後用途別の調整 • GPT-3では570GBの文章で事前学習 ◦ GPT-3.5: GPT-3に編集と挿入機能を持たせる ◦ ChatGPT: GPT-3.5に対して微調整したもの 16
終わり 17