Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DB Tree Algorithms
Search
Yunosuke Yamada
October 16, 2022
Programming
0
86
DB Tree Algorithms
Yunosuke Yamada
October 16, 2022
Tweet
Share
More Decks by Yunosuke Yamada
See All by Yunosuke Yamada
ChatGPTのアルゴリズム
yunosukey
0
340
React and XSS
yunosukey
0
230
Tests in Go
yunosukey
1
100
Bugless Code
yunosukey
0
110
圏論とコンピュータサイエンス / Category Theory and Theoretical Computer Science
yunosukey
0
210
Other Decks in Programming
See All in Programming
A New Era of Testing
mannodermaus
2
150
ドメイン駆動設計を実践するために必要なもの
bikisuke
3
330
令和トラベルにおけるLLM活用事例:社内ツール開発から得た学びと実践
ippo012
0
120
仮想ファイルシステムを導入して開発環境のストレージ課題を解消する
segadevtech
2
500
How to Break into Reading Open Source
kaspth
0
150
月間4.5億回再生を超える大規模サービス TVer iOSアプリのリアーキテクチャ戦略 - iOSDC2024
techtver
PRO
1
770
Debugging: All you need to know (for simultaneous interpreting)
jmatsu
2
480
Lessons by WebAssembly app in production on CDN Edge Computing Service
tetsuharuohzeki
0
160
事業フェーズの変化に対応する 開発生産性向上のゼロイチ
masaygggg
0
170
Jakarta EE meets AI
ivargrimstad
1
280
React + TextAliveでカッコいいLyric Applicatioinを作ろう!!
tosuri13
0
390
Desafios e Lições Aprendidas na Migração de Monólitos para Microsserviços em Java
jessilyneh
2
140
Featured
See All Featured
Building Your Own Lightsaber
phodgson
101
6k
Keith and Marios Guide to Fast Websites
keithpitt
408
22k
Mobile First: as difficult as doing things right
swwweet
221
8.8k
The Brand Is Dead. Long Live the Brand.
mthomps
53
37k
Practical Orchestrator
shlominoach
185
10k
GitHub's CSS Performance
jonrohan
1029
450k
The Illustrated Children's Guide to Kubernetes
chrisshort
47
48k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
157
15k
Automating Front-end Workflow
addyosmani
1365
200k
For a Future-Friendly Web
brad_frost
174
9.3k
A designer walks into a library…
pauljervisheath
201
24k
Debugging Ruby Performance
tmm1
72
12k
Transcript
DBとアルゴリズム 2021/09/09 山田悠之介
Web の技術とアルゴリズム アルゴリズムの理論には純粋なパズル的な楽しさがある Web の技術ではプラクティカルな話が中心で理論の話は多くない (そんな事ないよって方の LT をお待ちしています) DB は理論の話が多く面白い
今回は DB にまつわるアルゴリズムのうち、木に関するものを紹介 2
流れ データ構造をいくつか紹介 BST B-tree LSM tree(主題) 時間があれば LSM tree における最適化をいくつか紹介
3
BST(二分探索木) 右部分木のノードは親より大きく、左部分木のノードは親より小さい 多くの言語で Map, Set の実装に使われる 4
BST(二分探索木) バランスしている時、読み込み・書き込み (INSERT, UPDATE, DELETE)がO(log N) 5
BST はディスクと相性が悪い バランシングが頻発する → ディスクの読み書きが増える ノードサイズとページサイズと合っていない 6
B-tree (B+ tree) ディスクに最適化された探索木 多くの RDBMS (MySQL, PostgreSQL など) のストレージエンジン
でインデックスとして用いられている 7
B-tree (B+ tree) ディスク最適化 各ノードの大きさをページサイズに合わせる バランシングも兄弟への分割・兄弟とのマージなので局所的 8
B-tree の向き・不向き 読み込み・書き込みともに だが、 書き込みが多いユースケースではボトルネックになる ミュータブルなので排他制御が必要 O(log N) 9
LSM tree 書き込みに最適化されたデータ構造 Cassandra などの NoSQL, Spanner などの分散 DB で用いられる
書き込みが 、読み込みが 書き込み時はメモリとログに書くだけにして、 重複を読み込み時に解決する ディスク上のコンポーネントはイミュータブルで、 ロックなしで読み書きできる O(1) O(N) 10
LSM tree 小さなメモリ上のコンポーネント (memtable) 大きなディスク上のコンポーネント(複数) からなる 11
LSM tree 全ての書き込みは memtable に適用される 耐久性を保証するためにログファイルが必要となる memtable はサイズが閾値になると,ディスク上に永続化される ディスク上のデータ構造は B-tree
が一般的 12
LSM tree フラッシュ後のテーブルの数を抑えるために定期的にマージする (コンパクション) コンパクションではマージされた結果を新しいファイルに書き出す (イミュータブル) 13
LSM tree の書き込みと読み込み 追加・更新は memtable に新たに key と value を追加するだけ
削除では memtable からデータレコードを削除するだけでは不十分 (ディスク上のコンポーネントが同じキーのデータレコードを 保持している可能性がある) value に特別な削除エントリ(墓石)を割り当てることで対応 読み込みでは複数のコンポーネントにアクセスし、 タイムスタンプを比較して最新の結果を返すようにする → どのコンポーネントにレコードがあるか知りたい 14
Leveled compaction レベル 0 はフラッシュされたテーブルがそのまま入る レベル 1 以降は上のレベルからマージされ、 key の範囲が各レベルで被らないようにすることで探索を最適化する
15
Bloom Filter 各レベルである key がどのテーブルの範囲にあるかはわかるが、 本当にそのテーブルにあるかは分からない Bloom filter という確率的データ構造がよく使われる 16
Bloom Filter 構築時: 要素の key に対して hash 値のビットを全て立てる (ビット配列は共有) 探索時:
hash 値のビットが全て立っていれば要素かもしれない、 そうでなければ要素ではない 17
まとめ B-tree は読み込み・書き込みともに優れたデータ構造 特殊なケースでは書き込みに特化した LSM tree が使われる LSM tree の読み取りを改善する最適化がいろいろある
18
参考資料 Database Internals 19