Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゆううきの研究開発まとめ (2019年2月版) / The summary of yuuki'...
Search
Yuuki Tsubouchi (yuuk1)
February 13, 2019
Research
1
4.9k
ゆううきの研究開発まとめ (2019年2月版) / The summary of yuuki's research and development in 02/2019
さくらインターネット研究所 研究会 2019.02.13
これまでの研究開発や開発運用について、さくらインターネット研究所内の研究会で話しました。
研究員 坪内佑樹
Yuuki Tsubouchi (yuuk1)
February 13, 2019
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
8
3.8k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
950
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
1k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
210
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
2k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
280
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
19
14k
Cloudless Computingの論文紹介
yuukit
2
570
#SRE論文紹介 Detection is Better Than Cure: A Cloud Incidents Perspective V. Ganatra et. al., ESEC/FSE’23
yuukit
3
2.1k
Other Decks in Research
See All in Research
能動適応的実験計画
masakat0
2
720
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
150
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
730
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3k
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
200
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
14
9.4k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
410
EarthMarker: A Visual Prompting Multimodal Large Language Model for Remote Sensing
satai
3
390
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
150
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
150
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
130
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
6.5k
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Fireside Chat
paigeccino
37
3.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
182
54k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
How to Ace a Technical Interview
jacobian
278
23k
Facilitating Awesome Meetings
lara
54
6.5k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
͘͞ΒΠϯλʔωοτ גࣜձࣾ (C) Copyright 1996-2019 SAKURA Internet Inc ͘͞ΒΠϯλʔωοτ ݚڀॴ
Ώ͏͏͖ͷݚڀ։ൃ·ͱΊ (20192݄൛) 2019/02/13 ݚڀһ ௶ ༎थ ͘͞ΒΠϯλʔωοτݚڀॴ ݚڀձ 2019.02.13 @yuuk1t / id:y_uuki
2 1. ݚڀςʔϚ 2. େֶɾେֶӃ࣌ͷݚڀ 3. ΤϯδχΞͱͯ͠ͷݚڀ։ൃ 4. ͘͞ΒͰͷݚڀ։ൃ͍͖ͬͯ 5.
·ͱΊ ΞδΣϯμ
1. ݚڀςʔϚ
4 ਓؒͱίϯϐϡʔλʔͷؔੑͱӡ༻ ίϯϐϡʔλʔ γεςϜ Ϣʔβʔ ։ൃӡ༻ऀ ӡ༻ ӡ༻ • ։ൃӡ༻ऀ͚ͷίϯϐϡʔλʔγεςϜଟ͋Γ
Ϣʔβʔͱ։ൃӡ༻ऀͷ۠ผᐆດʹͳ͍ͬͯΔ • ਓؒͱίϯϐϡʔλʔͷؔੑมԽͯ͠”ӡ༻”͕ ଘࡏ͢Δ͜ͱʹมΘΓͳ͍ “ӡ༻”: มߋ => ҭ => ର ݱ࣮ίϯϐϡʔλʔͷมߋ͕ ා͍
5 ݚڀςʔϚ: ӡ༻Λָ͘͢͠Δ ɾίϯϐϡʔλʔγεςϜͷڪාΛͳ͘͠ӡ༻Λָ͠ΊΔΑ͏ʹ͢ Δ ɾָ͘͠ͳ͍ͱਐ·ͳ͍ ɾίϯϐϡʔλʔ͕ਓͷࣄΛୣ͍ͬͯͬͨ͋ͱʹΔͷͷҰͭʹ ίϯϐϡʔλʔͷӡ༻Λָ͠Ή͜ͱͰͳ͍͔
6 ɾා͞ͷݪҼ৴པੑͷԼ ɾ৴པੑΛ੍ޚ͠ɺมߋΛ࠷େԽ͢Δ ɾมߋͰ͖Δ͜ͱָ͍͠ Site Reliability Engineering (SRE) https://blog.yuuk.io/entry/2019/thinking-sre
7 ɾ؍ଌͱ࣮ݧͷϧʔϓΛߴʹճ͠ɺ৴པੑΛ੍ޚͭͭ͠มߋΛ ߴΊΔγεςϜϏδϣϯ Experimentable Infrastructure
8 ɾมߋ͕͍͠ͷσʔλΛͭγεςϜ ɾ͜Ε͔Βਓ͕ؒੜ͢ΔίϯςϯπΑΓ ػց͕ੜ͢Δσʔλ͕ٸ૿ ɾOSϛυϧΣΞͷϨΠϠͷΈͰ͋ΒΏΔ ཁٻΛຬͨ͢ͷࠔ ɾΞϓϦέʔγϣϯӡ༻ٕज़·Ͱ౿ΈࠐΜ ͩਨ౷߹తͳΞϓϩʔν͕ඞཁ Data-Intensive Applications
2. ֶ෦ɾେֶӃ࣌ͷݚڀ
10 ɾେֶֶ෦࣌ ɾॏෳഉআετϨʔδͷͨΊͷSHA-1ܭࢉγεςϜͷSSE໋ྩʹΑΔߴ εϧʔϓοτԽ ɾେֶӃത࢜લظ՝ఔ࣌ ɾTCP/IPελοΫʹ͓͚ΔνΣοΫαϜܭࢉͷGPUΦϑϩʔσΟϯά 2011~2013
11 ϓϩηοαͷΩϟογϡϝϞϦͱSIMDԋࢉ
12 GPGPUͱLinuxΧʔωϧύέοτॲཧ ɾLinuxΧʔωϧͷTCP/IPελοΫॲཧͷ͏ͪɺTCPϔομͷνΣοΫα ϜܭࢉΛGPUʹ·͔ͤͯεϧʔϓοτΛ্ͤ͞Δ ɾGPUͷϝϞϦ্ʹରσʔλ͕ἧͬͯͳ͍ͱGPUͷ࣮ޮޮ͕͍ ɾύέοτ܊Λ1ͭͷετϦʔϜʹ٧ΊࠐΜͰɺGPU্Ͱ·ͱΊͯܭࢉ ͤ͞Δ ɾ1500όΠτఔͷύέοτͰੑೳ͕ͰͣɺJumbo Frame (7000ό
Πτ͙Β͍) ར༻࣌ʹطଘख๏ΑΓεϧʔϓοτ͕ߴ͘ͳΔ
13 ֶ෦ɾେֶӃ࣌ͷৼΓฦΓ ɾϓϩηοαɺฒྻॲཧɺLinuxΧʔωϧɺTCP/IPʹֶ͍ͭͯͨ ɾ͜ͷ͋ͨΓͷॲཧϞσϧͱ࣮ߦ࣌ؒɺϦιʔεফඅͷഽײ͕֮ͳΜͱ ͳ͘Θ͔͍ͬͯΔͱɺ্ҐͷWebαʔόσʔλϕʔεΛѻ͏্Ͱϒ ϥοΫϘοΫε͕গͳ͘ݟ͑ͨ ɾ࣮ࡍʹଘࡏ͠ͳ͍Λղ͍͍ͯΔΑ͏ͳؾ࣋ͪʹͳΔ͜ͱ͋ͬͨ ɾاۀʹೖͬͯɺ࣮ࣾձͷҙࣝΛ࣮ײ্ͨ͠ͰɺݚڀͰ͖ΔͱΑΓ Αͦ͞͏ͩͱߟ͑࢝Ίͨ
14 ͜ͷ͜Ζͷϒϩά ɾ΄ͦ΅ͦͱॻ͍͍ͯͨϒϩά͕ಡ·ΕΔΑ͏ʹ
3. ΤϯδχΞͱͯ͠ͷݚڀ։ൃ
16 ɾαʔόࢹαʔϏεͷߏஙͱӡ༻ ɾϒϩάαʔϏεͳͲɺ౷తͳWebαʔϏεͷߏஙͱӡ༻ ɾશαʔϏεͷΠϯϑϥج൫(ԾԽϓϩϏδϣχϯάͳͲ)ͷ։ൃ ͱӡ༻ ɾϓϩδΣΫτϚωδϝϯτɺνʔϜϏϧσΟϯάɺϝϯλϦϯά ɾγεςϜϏδϣϯ͔ΒΛղܾ͢ΔϙδςΟϒΞϓϩʔνͷ࣮ફ ܦݧͨ͠։ൃɾӡ༻
17 ࣌ܥྻσʔλϕʔεͷߏஙɾӡ༻ɾ։ൃ https://blog.yuuk.io/entry/high-performance-graphite https://blog.yuuk.io/entry/the-rebuild-of-tsdb-on-cloud
18 ϨΨγʔγεςϜͷӡ༻վળ
19 ݚڀ։ൃ࣮ 1.௶༎थ, TimeFuzeΞʔΩςΫνϟߏ - ॲཧͱσʔλͱλΠϚʔΛҰମԽͨ͠σʔ λύΠϓϥΠϯ, ΣϒγεςϜΞʔΩςΫνϟ(WSA)ݚڀձ ୈ1ճ, 201712݄23
2.௶༎थ, αʔόϨε࣌ʹ͓͚ΔϔςϩδχΞε࣌ܥྻσʔλϕʔεΞʔΩςΫ νϟ, ΣϒγεςϜΞʔΩςΫνϟ(WSA)ݚڀձ ୈ2ճ, 201805݄12 3.௶༎थ,ݹխେ, TCPଓͷʹΑΔ؆ུԽ͞ΕͨωοτϫʔΫґଘؔάϥϑ ͷՄࢹԽج൫, ୈ3ճΣϒγεςϜΞʔΩςΫνϟ(WSA)ݚڀձ, 201811݄17 ɾࠃࠪಡ͖จ ɾޱ಄ൃද ௶༎थ,ࡔேਓ,ᖛా݈,দխ,Ѩ෦ത,দຊ྄հ, HeteroTSDB: ҟछࠞ߹Ωʔό ϦϡʔετΞΛ༻͍ͨࣗಈ֊ԽͷͨΊͷ࣌ܥྻσʔλϕʔεΞʔΩςΫνϟ, Πϯ λʔωοτͱӡ༻ٕज़γϯϙδϜจू, 2018, 7-15 (2018-11-29), Dec 2018
20 ɾࠪಡ͖จ 1݅ ɾֶज़ߨԋ x 3݅ ɾࠃൃද x 34݅ ɾύωϧσΟεΧογϣϯ
x 4݅ ɾڝٕ ISUCON ຊઓग़ 2ճ ɾϒϩάଟ ࣮·ͱΊ
21 ɾ։ൃͨ͠༰Λݚڀͱͯ͠Έ͠ɺจߘݚڀձൃද ɾ࣮ࡍͷࣾձͷཁٻʹج͍ͮͨҙࣝΛѻ͑ɺϓϩμΫγϣϯͰಈ ࡞͍ͯ͠ΔͷΛจʹॻ͚Δ ɾҰํͰɺ࣮Ͱظతͳ༏ઌʹͳΓ͕ͪͳͨΊɺݚڀΛҭͯ ͍ͯ͘͜ͱ͍͠ ɾͰ։ൃͨ͠ͷͰϓϩμΫΫγϣϯڥͰීٴͤ͞Δʹɺ ୯Ґͷ͕͔͔࣌ؒͬͨ ΤϯδχΞͱͯ͠ͷݚڀ։ൃৼΓฦΓ
4. ͘͞ΒͰͷݚڀ։ൃ͍͖ͬͯ
23 ɾͱαʔόʔؒͷԆݮ ɾσʔληϯλʔͷτϥϑΟοΫϘϦϡʔϜͷݮ ϢϏΩλεσʔληϯλʔ ɾ౷తͳͷΣϒΞϓϦέʔγϣϯ ɾϦΞϧλΠϜͳ࣌ܥྻσʔλΛऩू͢ΔΞϓϦέʔγϣϯ Potentials ͕ࣗఆ͢ΔApplications Challenges ɾϢϏΩλεDCڥͰͷσʔλͷஔɺసૹԆɺނোΛಁա͢Δ
24 ɾϢϏΩλεσʔληϯλʔߏͷ͏ͪɺData-IntensiveྖҬΛ୲ ɾԆͷେ͖ͳࢄڥͰࢄγεςϜͱͯ͠ͷಁաੑΛ୲อ͢Δ͜ ͱ͕՝ ɾ͋ΒΏΔΞϓϦέʔγϣϯΛมߋͳ͘ϢϏΩλεDC্ͰޮՌతʹಈ ࡞ͤ͞Δ͜ͱ͍͠ ɾ·ͣɺΞϓϦέʔγϣϯΛԾఆͯ͠ɺঃʑʹҰൠԽ͍ͯ͘͠ ɾWordPressͳͲͷ౷తͳWebΞϓϦέʔγϣϯ ɾIoTͳͲͷϦΞϧλΠϜ࣌ܥྻσʔλऩूΞϓϦέʔγϣϯ ݚڀํ
25 ݚڀϚΠϧετʔϯ: จߘۦಈ จߘ ༰ ~4݄ IOT45 σʔλΠϯςϯγϒɾϢϏΩλεDCͷ ઃܭ ~5݄
IOT46 TimeFuzeΞʔΩςΫνϟ ~7݄ DICOMO2019 (COMPSAC 2019) ࣌ܥྻσʔλϕʔε ~8݄ FIT 2019 άϥϑߏՄࢹԽ ~9݄ IOTS2019(ࠪಡ) ↑ͷதͰࣗ৴ͷ͋Δͷ
26 ɾจͷʮ͡ΊʹʯΛॻ͚Δ͜ͱΛϚΠϧετʔϯͱͯ͠ɺ࠷ॳ͔ ΒετʔϦʔΛͭ͘Γͳ͕Βɺݚڀ։ൃ͍ͯ͘͠ ɾͻͱͭͷςʔϚΛҭͯΔ ɾݚڀձจɺࠃࠪಡ͖จɺࠃࡍձٞɺδϟʔφϧΛ௨ͨ͡ ࣭ͷ্ ɾจͷͨΊͷίʔυͰͳ͘ɺ࣮ફͰ͑ΔιϑτΣΞͱͯ͠࡞ ΓࠐΜͰ͍͘ ࠓޙͷల