$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Off-Policy Evaluation and Learning for Matching...
Search
Yudai Hayashi
November 09, 2025
Research
0
55
Off-Policy Evaluation and Learning for Matching Markets
RecSys 2025 論文読み会での発表資料です。
https://connpass.com/event/372676/
Yudai Hayashi
November 09, 2025
Tweet
Share
More Decks by Yudai Hayashi
See All by Yudai Hayashi
ジョブマッチングプラットフォームにおける推薦アルゴリズムの活用事例
yudai00
0
64
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
650
MCP Clientを活用するための設計と実装上の工夫
yudai00
1
1.2k
人とシゴトのマッチングを実現するための機械学習技術
yudai00
1
61
MCPを理解する
yudai00
17
12k
データバリデーションによるFeature Storeデータ品質の担保
yudai00
1
220
「仮説行動」で学んだ、仮説を深め ていくための方法
yudai00
8
2k
相互推薦システムでのPseudo Label を活用したマッチ予測精度向上の取り組み
yudai00
1
970
Wantedly Visitにおけるフリーワード検索時の推薦のオンライン化事例紹介
yudai00
1
310
Other Decks in Research
See All in Research
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
370
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
680
単施設でできる臨床研究の考え方
shuntaros
0
3.2k
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
150
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
470
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.1k
IMC の細かすぎる話 2025
smly
2
750
CVPR2025論文紹介:Unboxed
murakawatakuya
0
210
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
380
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
150
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
A Modern Web Designer's Workflow
chriscoyier
697
190k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
118
20k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Building Applications with DynamoDB
mza
96
6.8k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Making Projects Easy
brettharned
120
6.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
© 2025 Wantedly, Inc. INTERNAL ONLY Off-Policy Evaluation and Learning
for Matching Markets RecSys 2025 論文読み会 Nov. 9 2025 - Yudai Hayashi, Shuhei Goda and Yuta Saito
© 2025 Wantedly, Inc. INTERNAL ONLY 自己紹介 林 悠大 •
所属:ウォンテッドリー株式会社 • 経歴: ◦ 2022年にデータサイエンティストとして新卒入社 • 趣味: ◦ 音楽を聞くこと ◦ ウイスキー
© 2025 Wantedly, Inc. INTERNAL ONLY マッチングプラットフォームにおける推薦システム 企業 求職者 スカウト
返信 購入 ECプラットフォーム マッチングプラットフォーム ユーザー 商品 マッチング推薦の成功には、双方向の嗜好の一致が必要
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値:推薦システム(= 方策)の生み出す価値の定量化 ECプラットフォーム マッチングプラットフォーム
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値が正しく推定できることのインパクト 仮に既存の方策のデータから を推定することができれば、 •
A/B テストより低コストで方策評価が可能 → オフ方策評価 • 推定した方策価値 を目的関数として学習 することでより良いモデルを得るこ とができる → オフ方策学習
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 ECプラットフォーム 非マッチング文脈において様々な推定量が提案されてきた :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大)
© 2025 Wantedly, Inc. INTERNAL ONLY 方策価値の代表的な推定量 非マッチング文脈において様々な推定量が提案されてきた マッチングプラットフォーム :重要度重み
• IPS や DR で不偏推定を実現 • 正解ラベルがスパースなときや行動空間が 大きい時に、発散的に増大し推定値が不安 定化 (バリアンスの増大) 双方向の嗜好が関連することにより、 正解ラベルがスパースに
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DiPS :
スカウト送信ラベル : 推定スカウト返信確率 IPS part DM part スカウト送信と返信を別々に分けて扱う • 比較的密なスカウト送信ラベルは IPS のように重要度重みを利用して低バイアスに推定 • 疎なスカウト返信は、DM のように予測モデルを利用して低バリアンスに推定
© 2025 Wantedly, Inc. INTERNAL ONLY 提案手法 - DPR :
推定マッチ確率 スカウト送信と返信を別々に分けて扱う DiPS を DR 推定量と同じ形で拡張することで、さらにバリアンスを低減
© 2025 Wantedly, Inc. INTERNAL ONLY 評価指標 推定の正しさの指標 : 方策選択の正しさの指標
:
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 候補者数が多く、重要度重みが不安定になりやすい設定でもバリアンスを低く抑えられている •
従来手法よりも低 MSE, 低 Selection Error を達成
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証結果 • 正解ラベルがスパースな設定においてもバリアンスを低く抑えられている •
推定モデルを使っているためバイアスは増加するが、スカウト送信側は重要度重みを利用している ため、DM よりバイアスの増加を抑えられている
© 2025 Wantedly, Inc. INTERNAL ONLY 合成データによる検証 - オフ方策学習 方策価値の推定値を最大化させるようにモデルを学習
既存方策の性能を示す基準線 (黒線) や、他の推定量を使って学習したときよりも高い性能を 示している
© 2025 Wantedly, Inc. INTERNAL ONLY 実データによる検証 Wantedly Visit の過去のオンラインテストの結果を使って検証
• バリアンスの低減効果が実データにおいても見られた • 従来手法 (IPS, DR) と比較して、バイアスも低下するような振る舞い ◦ 返信確率の誤差 + α で説明できる (詳細は論文を参照してください)
© 2025 Wantedly, Inc. INTERNAL ONLY まとめ • マッチングプラットフォームにおいて、信頼度高く新しい方策の価値を推定するための 2つの推定
量 DiPS、DPR を提案 • 合成データと Wantedly Visit の実データの両方を使って提案手法の有効性を実証 • オフ方策学習においても、従来手法よりも高い性能のモデルを得ることができることを実証 ブログ記事 arXiv