Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これまでの研究経過と希望する研究 / Research Plan for Doctoral C...
Search
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Research
1
370
これまでの研究経過と希望する研究 / Research Plan for Doctoral Course
令和2年度4月期入学 京都大学大学院 情報学研究科
博士後期課程 第2次学力検査 口頭試問
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
690
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.4k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
1.1k
クラウドのテレメトリーシステム研究動向2025年
yuukit
4
1.1k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
260
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
2.1k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
300
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
19
14k
Cloudless Computingの論文紹介
yuukit
2
600
Other Decks in Research
See All in Research
Combinatorial Search with Generators
kei18
0
980
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
2k
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
8.7k
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
7
1.8k
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
220
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
660
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
280
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
860
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
370
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Designing for Performance
lara
610
69k
It's Worth the Effort
3n
187
28k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Visualization
eitanlees
149
16k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
Thoughts on Productivity
jonyablonski
70
4.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
Practical Orchestrator
shlominoach
190
11k
Gamification - CAS2011
davidbonilla
81
5.5k
Transcript
͜Ε·Ͱͷݚڀܦաͱر͢Δݚڀ ௶ ༎थ 20202݄6 ྩ24݄ظೖֶ ژେֶେֶӃ ใֶݚڀՊ ത࢜ޙظ՝ఔ ୈֶ̎࣍ྗݕࠪ ޱ಄ࢼ
2 1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ 2. ر͢Δݚڀͷഎܠͱత 3. ر͢Δݚڀͷ՝ͱํ๏ 4. ظ͞ΕΔݚڀՌ ࣍
1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ
4 ֶ࢜՝ఔ: SHA-1ܭࢉγεςϜͷߴεϧʔϓοτԽ ɾഎܠ: ετϨʔδ্ͷσʔλอଘྔ͕૿େ͍ͯ͠Δ ɾ: σʔλͷॏෳՕॴΛഉআ͢Δ͜ͱʹΑΓɼσʔλอଘྔΛ ݮՄೳ͕ͩɼॏෳ෦ͷൃݟॲཧ͕ϘτϧωοΫͱͳΔ ɾఏҊ: ෳͷҟͳΔνϟϯΫʹର͢ΔॏෳൃݟॲཧΛSIMDԋࢉثʹ
ΑΓฒྻॲཧ͠ɼߴԽ͢Δ ɾ࣮ݧ: ઌߦख๏ͱൺֱͯ͠ɼ2.0ഒͷεϧʔϓοτ্Λୡͨ͠ ௶༎थ, ҏจ, ஔాਅੜ, ࢁ૱, ദַ, ഡݪ݉Ұ, ॏෳഉআετϨʔδͷͨΊͷ SHA-1ܭࢉγεςϜͷSSE໋ྩʹ ΑΔߴεϧʔϓοτԽ, ిࢠใ௨৴ֶձจࢽ D, 96(10), 2101-2109 2013.
5 म࢜՝ఔ: TCP/IPνΣοΫαϜͷGPUʹΑΔੑೳ্ ɾഎܠ: ίϯϐϡʔλωοτϫʔΫ͕ଳҬԽ͍ͯ͠Δ ɾ: OS෦ͷ௨৴ॲཧͷͨΊͷCPUෛՙ͕ߴ·ͬͯ ͍Δ ɾఏҊ: ௨৴ॲཧͷ͏ͪ௨৴σʔλʹର͢ΔνΣοΫαϜܭࢉΛGPU
ʹҕৡ͢Δ͜ͱʹΑΓɼCPUෛՙΛݮͤ͞Δ ɾ࣮ݧ: CPUʹΑΔνΣοΫαϜΛߦ͏ͱൺֱ͠ɼσʔλసૹε ϧʔϓοτ͕࠷େͰ13%্ ௶༎थ, ୩߶, ୩ޱٛ໌, தതོ, দԬໜొ, TCP/IPελοΫʹ͓͚ΔνΣοΫαϜܭࢉͷ GPU Φϑ ϩʔυʹΑΔ ੑೳ্ख๏, ిࢠใ௨৴ֶձٕज़ݚڀใࠂ, NS, ωοτϫʔΫγεςϜ, 113(244), pp.67-72 2013 10݄.
ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ ߴ৴པԽͷͨΊͷΞʔΩςΫνϟʹؔ͢Δݚڀ ത࢜՝ఔͰر͢Δݚڀͷ
2. ر͢Δݚڀͷഎܠͱత
8 WebαʔϏεͷཁٻͷߴԽ ・サービスの信頼性の期待値向上 ・冗⻑性の確保,アクセス増に対するスケーラビリティの向上 ɾ୯ҰͷࣄۀऀʹΑΔෳͷαʔϏεల։ ɾڞ௨෦Λ֤αʔϏεͰڞ༗͢Δ͜ͱͰαʔϏεಉ͕࢜௨৴ ɾ10୯ҐͷظؒͷαʔϏεఏڙ ɾػೳͷՃɼιϑτΣΞͷߋ৽ɼγεςϜߏͷ৽ͳͲΛܧଓ ɾར༻ऀͷ͔ΒΫϥυͷωοτϫʔΫԆΛॖ ɾཧతʹࢄͨ͠ڥʹ͓͚ΔࢄΞϓϦέʔγϣϯઃܭ͕ࠓޙඞ
ཁͱͳΔ => ۭؒతӨڹൣғͷ૿େ => ࣌ؒతӨڹൣғͷ૿େ
9 ཧࢄԽʹؔ͢Δҙࣝ γεςϜͷ෦ঢ়ଶͷѲ ͕͘͠ͳΔ ωοτϫʔΫԆͷ૿Ճ ɾγεςϜʹมߋΛՃ͑Δલ ʹɼϦεΫͷൣғΛݟੵΕ ͳ͘ͳΔ ɾϦεΫ͕ݦࡏԽͨ͠ͱ͖ʹɼ ݪҼͷಛఆ͕͘ͳΔ
ɾ֤ڌʹࢄ͢Δσʔλͷ ಉظ͕ͪ࣌ؒେ͖͘ͳΔ ɾσʔλϕʔε(DBMS)ͷҰ؏ ੑͱੑೳΛཱ྆ͤͮ͞Β͍ ߏཁૉͷ૿Ճ
10 ઌߦݚڀͱ՝: Մ؍ଌੑ ࣌ؒ࣠ํͷՄ؍ଌੑ ۭؒ࣠ํͷՄ؍ଌੑ ɾ࣌ܥྻσʔλϕʔεʹ֤छ ܭଌΛอଘ͢Δ ɾੑೳΛॏࢹ࣮ͯ͠Λ࣌ܥ ྻσʔλʹ࠷దԽ͍ͯ͠Δ ɾطଘͷDBMSΛར༻ͨ͠ޓ
ੑ֦ுੑ͕ࣦΘΕΔ ɾαϒγεςϜؒͷґଘؔΛ ࣗಈͰ͢Δ ɾطଘͷΞϓϦέʔγϣϯίʔ υͷมߋΛͱͳ͏ɼ͋Δ͍ ΞϓϦέʔγϣϯʹ༩͑Δ ੑೳӨڹ͕େ͖͍
11 ઌߦݚڀͱ՝: ੑೳͱσʔλҰ؏ੑ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖͍ڌ ʹಉظ͕࣌ؒ͞ΕΔ ɾ֤ڌؒͷσʔλΛඇಉظߋ৽ ɾσʔλҰ؏ੑʹର͢ΔΞϓϦ έʔγϣϯ։ൃऀͷൣғ͕ େ͖͘ͳΔ
ऑ͍Ұ؏ੑ(݁Ռ߹ੑ) Ԇͷେ͖ͳڥͰͷੑೳͱσʔλҰ؏ੑͷཱ྆ ڧ͍Ұ؏ੑ
ݚڀͷత ɾత: ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ৴པੑ্ ɾ੍: طଘͷΞϓϦέʔγϣϯϛυϧΣΞͷίʔυΛมߋͤͣɼ ੑೳӨڹΛ͋ͨ͑ͳ͍ ɾ3ͭͷݚڀ՝ 1. ࣌ؒ࣠ͷՄ؍ଌੑ: ࣌ܥྻσʔλϕʔεͷੑೳͱޓੑͷཱ྆
2. ۭؒ࣠ͷՄ؍ଌੑ: ґଘؔΛෛՙ͔ͭཏతʹ 3. σʔλͷҰ؏ੑΛอূͭͭ͠ɼԠੑೳΛ࠷େԽ 12
3. ر͢Δݚڀͷ՝ͱํ๏
՝(1) ࣌ؒ࣠ํͷՄ؍ଌੑ ࣌ܥྻσʔλϕʔεʹ͓͚Δੑೳͱ֦ுੑͷཱ྆
15 ఏҊ(1): ՝ͱఏҊ ࣌ܥྻσʔλϕʔεͷ՝ ɾطଘͷDBMSΛར༻ͨ͠ޓ ੑ͕ࣦΘΕΔ ఏҊ ɾ୯ҰͷDBMSΛσʔλߏ୯ҐͰ ղ͠ɼૄ݁߹Խ ɾΠϯϝϞϦͱΦϯσΟεΫͷKVSΛ
֊Խͯ͠ॲཧͱอଘͷޮԽ ɾ֤σʔλߏʹରͯ͠طଘͷDBMS Λར༻Մೳ In-Memory KVS On—Disk KVS Tiering Single DBMS DBMS Index DBMS Log ఏҊΞʔΩςΫνϟ
՝(2) ۭؒ࣠ํʹ͓͚ΔՄ؍ଌੑ ґଘؔΛ͢Δ্Ͱ ཏੑͱΦʔόʔϔουΛཱ྆
17 ఏҊ(2): ιέοτࢹ ґଘؔͷ՝ ɾطଘͷΞϓϦέʔγϣϯ ίʔυͷมߋΛͱͳ͏ɼ ͋Δ͍ΞϓϦέʔγϣϯ ʹ༩͑ΔੑೳӨڹ͕େ͖͍ ఏҊ ɾશαʔό্ͰɼOSΧʔωϧͷTCP
ଓͷऴͰ͋ΔιέοτΛࢹ ɾιέοτࢹϓϩηεΛஔ͢Δͷ ΈͰՄೳ ɾιέοτࢹΞϓϦέʔγϣϯͷ ௨৴ʹׂΓ͜·ͣɼΦʔόϔου Kernel Process TCP Flows . . . User ιέοτࢹ Process
՝(3) ཧࢄڥʹ͓͚Δσʔλϕʔε ͷҰ؏ੑͱੑೳͷཱ྆
19 ఏҊ(3): σʔλͷಉظൣғΛదԠతʹܾఆ σʔλҰ؏ੑͱੑೳͷ՝ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖ͳڌ ʹಉظॲཧ͕͞ΕΔ ఏҊ ɾಡΈࠐΈॲཧͷΈͷॖʹண͠ɼ தԝͷڌʹॻ͖ࠐΈΛ͚Δ
ɾશڌͰಉظͤͣʹɼதԝͷڌ͔ ΒωοτϫʔΫԆ͕ҰఆΑΓখ ͍͞Ұ෦ͷڌͷΈಉظ ɾΞϓϦέʔγϣϯ୯ҐͷಡΈॻ͖ൺ ʹج͖ͮಉظൣғΛదԠతʹܾఆ Origin தԝͷڌ Replica Τοδͷڌ Replica ಉظൣғ
4. ظ͞ΕΔݚڀՌ
21 ݚڀશମͷظ͞ΕΔߩݙ ɾطଘͷΞϓϦέʔγϣϯίʔυDBMSΛมߋͤͣɼ͔ͭੑೳʹେ ͖ͳӨڹΛ༩͑ͳ͍ͱ͍͏੍ͷͱ 1. ཧࢄΞϓϦέʔγϣϯͷՄ؍ଌੑΛ্Մೳ 2. ؍ଌ݁ՌΛར༻͠ԠੑೳΛ࠷େԽ͢ΔΑ͏ʹదԠతʹ੍ޚՄೳ ɾγεςϜཧऀͷෛ୲Λ૿ͣ͞ʹWebαʔϏεͷ৴པੑΛ্͞ ͤɼਓʑ͕WebαʔϏεΛշద͔ͭ࣋ଓతʹར༻Ͱ͖ΔΑ͏ʹͳΔ