Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これまでの研究経過と希望する研究 / Research Plan for Doctoral C...
Search
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Research
1
360
これまでの研究経過と希望する研究 / Research Plan for Doctoral Course
令和2年度4月期入学 京都大学大学院 情報学研究科
博士後期課程 第2次学力検査 口頭試問
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
8
3.9k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
970
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
1k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
210
博士学位論文予備審査 / Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining
yuukit
1
2k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
280
工学としてのSRE再訪 / Revisiting SRE as Engineering
yuukit
19
14k
Cloudless Computingの論文紹介
yuukit
2
570
#SRE論文紹介 Detection is Better Than Cure: A Cloud Incidents Perspective V. Ganatra et. al., ESEC/FSE’23
yuukit
3
2.1k
Other Decks in Research
See All in Research
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
140
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
520
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
860
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
6.5k
Ad-DS Paper Circle #1
ykaneko1992
0
5.8k
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
130
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
14
9.5k
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
760
20250624_熊本経済同友会6月例会講演
trafficbrain
1
530
CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations
satai
3
230
NLP Colloquium
junokim
1
180
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Facilitating Awesome Meetings
lara
54
6.5k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Into the Great Unknown - MozCon
thekraken
40
2k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Designing for Performance
lara
610
69k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
͜Ε·Ͱͷݚڀܦաͱر͢Δݚڀ ௶ ༎थ 20202݄6 ྩ24݄ظೖֶ ژେֶେֶӃ ใֶݚڀՊ ത࢜ޙظ՝ఔ ୈֶ̎࣍ྗݕࠪ ޱ಄ࢼ
2 1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ 2. ر͢Δݚڀͷഎܠͱత 3. ر͢Δݚڀͷ՝ͱํ๏ 4. ظ͞ΕΔݚڀՌ ࣍
1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ
4 ֶ࢜՝ఔ: SHA-1ܭࢉγεςϜͷߴεϧʔϓοτԽ ɾഎܠ: ετϨʔδ্ͷσʔλอଘྔ͕૿େ͍ͯ͠Δ ɾ: σʔλͷॏෳՕॴΛഉআ͢Δ͜ͱʹΑΓɼσʔλอଘྔΛ ݮՄೳ͕ͩɼॏෳ෦ͷൃݟॲཧ͕ϘτϧωοΫͱͳΔ ɾఏҊ: ෳͷҟͳΔνϟϯΫʹର͢ΔॏෳൃݟॲཧΛSIMDԋࢉثʹ
ΑΓฒྻॲཧ͠ɼߴԽ͢Δ ɾ࣮ݧ: ઌߦख๏ͱൺֱͯ͠ɼ2.0ഒͷεϧʔϓοτ্Λୡͨ͠ ௶༎थ, ҏจ, ஔాਅੜ, ࢁ૱, ദַ, ഡݪ݉Ұ, ॏෳഉআετϨʔδͷͨΊͷ SHA-1ܭࢉγεςϜͷSSE໋ྩʹ ΑΔߴεϧʔϓοτԽ, ిࢠใ௨৴ֶձจࢽ D, 96(10), 2101-2109 2013.
5 म࢜՝ఔ: TCP/IPνΣοΫαϜͷGPUʹΑΔੑೳ্ ɾഎܠ: ίϯϐϡʔλωοτϫʔΫ͕ଳҬԽ͍ͯ͠Δ ɾ: OS෦ͷ௨৴ॲཧͷͨΊͷCPUෛՙ͕ߴ·ͬͯ ͍Δ ɾఏҊ: ௨৴ॲཧͷ͏ͪ௨৴σʔλʹର͢ΔνΣοΫαϜܭࢉΛGPU
ʹҕৡ͢Δ͜ͱʹΑΓɼCPUෛՙΛݮͤ͞Δ ɾ࣮ݧ: CPUʹΑΔνΣοΫαϜΛߦ͏ͱൺֱ͠ɼσʔλసૹε ϧʔϓοτ͕࠷େͰ13%্ ௶༎थ, ୩߶, ୩ޱٛ໌, தതོ, দԬໜొ, TCP/IPελοΫʹ͓͚ΔνΣοΫαϜܭࢉͷ GPU Φϑ ϩʔυʹΑΔ ੑೳ্ख๏, ిࢠใ௨৴ֶձٕज़ݚڀใࠂ, NS, ωοτϫʔΫγεςϜ, 113(244), pp.67-72 2013 10݄.
ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ ߴ৴པԽͷͨΊͷΞʔΩςΫνϟʹؔ͢Δݚڀ ത࢜՝ఔͰر͢Δݚڀͷ
2. ر͢Δݚڀͷഎܠͱత
8 WebαʔϏεͷཁٻͷߴԽ ・サービスの信頼性の期待値向上 ・冗⻑性の確保,アクセス増に対するスケーラビリティの向上 ɾ୯ҰͷࣄۀऀʹΑΔෳͷαʔϏεల։ ɾڞ௨෦Λ֤αʔϏεͰڞ༗͢Δ͜ͱͰαʔϏεಉ͕࢜௨৴ ɾ10୯ҐͷظؒͷαʔϏεఏڙ ɾػೳͷՃɼιϑτΣΞͷߋ৽ɼγεςϜߏͷ৽ͳͲΛܧଓ ɾར༻ऀͷ͔ΒΫϥυͷωοτϫʔΫԆΛॖ ɾཧతʹࢄͨ͠ڥʹ͓͚ΔࢄΞϓϦέʔγϣϯઃܭ͕ࠓޙඞ
ཁͱͳΔ => ۭؒతӨڹൣғͷ૿େ => ࣌ؒతӨڹൣғͷ૿େ
9 ཧࢄԽʹؔ͢Δҙࣝ γεςϜͷ෦ঢ়ଶͷѲ ͕͘͠ͳΔ ωοτϫʔΫԆͷ૿Ճ ɾγεςϜʹมߋΛՃ͑Δલ ʹɼϦεΫͷൣғΛݟੵΕ ͳ͘ͳΔ ɾϦεΫ͕ݦࡏԽͨ͠ͱ͖ʹɼ ݪҼͷಛఆ͕͘ͳΔ
ɾ֤ڌʹࢄ͢Δσʔλͷ ಉظ͕ͪ࣌ؒେ͖͘ͳΔ ɾσʔλϕʔε(DBMS)ͷҰ؏ ੑͱੑೳΛཱ྆ͤͮ͞Β͍ ߏཁૉͷ૿Ճ
10 ઌߦݚڀͱ՝: Մ؍ଌੑ ࣌ؒ࣠ํͷՄ؍ଌੑ ۭؒ࣠ํͷՄ؍ଌੑ ɾ࣌ܥྻσʔλϕʔεʹ֤छ ܭଌΛอଘ͢Δ ɾੑೳΛॏࢹ࣮ͯ͠Λ࣌ܥ ྻσʔλʹ࠷దԽ͍ͯ͠Δ ɾطଘͷDBMSΛར༻ͨ͠ޓ
ੑ֦ுੑ͕ࣦΘΕΔ ɾαϒγεςϜؒͷґଘؔΛ ࣗಈͰ͢Δ ɾطଘͷΞϓϦέʔγϣϯίʔ υͷมߋΛͱͳ͏ɼ͋Δ͍ ΞϓϦέʔγϣϯʹ༩͑Δ ੑೳӨڹ͕େ͖͍
11 ઌߦݚڀͱ՝: ੑೳͱσʔλҰ؏ੑ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖͍ڌ ʹಉظ͕࣌ؒ͞ΕΔ ɾ֤ڌؒͷσʔλΛඇಉظߋ৽ ɾσʔλҰ؏ੑʹର͢ΔΞϓϦ έʔγϣϯ։ൃऀͷൣғ͕ େ͖͘ͳΔ
ऑ͍Ұ؏ੑ(݁Ռ߹ੑ) Ԇͷେ͖ͳڥͰͷੑೳͱσʔλҰ؏ੑͷཱ྆ ڧ͍Ұ؏ੑ
ݚڀͷత ɾత: ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ৴པੑ্ ɾ੍: طଘͷΞϓϦέʔγϣϯϛυϧΣΞͷίʔυΛมߋͤͣɼ ੑೳӨڹΛ͋ͨ͑ͳ͍ ɾ3ͭͷݚڀ՝ 1. ࣌ؒ࣠ͷՄ؍ଌੑ: ࣌ܥྻσʔλϕʔεͷੑೳͱޓੑͷཱ྆
2. ۭؒ࣠ͷՄ؍ଌੑ: ґଘؔΛෛՙ͔ͭཏతʹ 3. σʔλͷҰ؏ੑΛอূͭͭ͠ɼԠੑೳΛ࠷େԽ 12
3. ر͢Δݚڀͷ՝ͱํ๏
՝(1) ࣌ؒ࣠ํͷՄ؍ଌੑ ࣌ܥྻσʔλϕʔεʹ͓͚Δੑೳͱ֦ுੑͷཱ྆
15 ఏҊ(1): ՝ͱఏҊ ࣌ܥྻσʔλϕʔεͷ՝ ɾطଘͷDBMSΛར༻ͨ͠ޓ ੑ͕ࣦΘΕΔ ఏҊ ɾ୯ҰͷDBMSΛσʔλߏ୯ҐͰ ղ͠ɼૄ݁߹Խ ɾΠϯϝϞϦͱΦϯσΟεΫͷKVSΛ
֊Խͯ͠ॲཧͱอଘͷޮԽ ɾ֤σʔλߏʹରͯ͠طଘͷDBMS Λར༻Մೳ In-Memory KVS On—Disk KVS Tiering Single DBMS DBMS Index DBMS Log ఏҊΞʔΩςΫνϟ
՝(2) ۭؒ࣠ํʹ͓͚ΔՄ؍ଌੑ ґଘؔΛ͢Δ্Ͱ ཏੑͱΦʔόʔϔουΛཱ྆
17 ఏҊ(2): ιέοτࢹ ґଘؔͷ՝ ɾطଘͷΞϓϦέʔγϣϯ ίʔυͷมߋΛͱͳ͏ɼ ͋Δ͍ΞϓϦέʔγϣϯ ʹ༩͑ΔੑೳӨڹ͕େ͖͍ ఏҊ ɾશαʔό্ͰɼOSΧʔωϧͷTCP
ଓͷऴͰ͋ΔιέοτΛࢹ ɾιέοτࢹϓϩηεΛஔ͢Δͷ ΈͰՄೳ ɾιέοτࢹΞϓϦέʔγϣϯͷ ௨৴ʹׂΓ͜·ͣɼΦʔόϔου Kernel Process TCP Flows . . . User ιέοτࢹ Process
՝(3) ཧࢄڥʹ͓͚Δσʔλϕʔε ͷҰ؏ੑͱੑೳͷཱ྆
19 ఏҊ(3): σʔλͷಉظൣғΛదԠతʹܾఆ σʔλҰ؏ੑͱੑೳͷ՝ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖ͳڌ ʹಉظॲཧ͕͞ΕΔ ఏҊ ɾಡΈࠐΈॲཧͷΈͷॖʹண͠ɼ தԝͷڌʹॻ͖ࠐΈΛ͚Δ
ɾશڌͰಉظͤͣʹɼதԝͷڌ͔ ΒωοτϫʔΫԆ͕ҰఆΑΓখ ͍͞Ұ෦ͷڌͷΈಉظ ɾΞϓϦέʔγϣϯ୯ҐͷಡΈॻ͖ൺ ʹج͖ͮಉظൣғΛదԠతʹܾఆ Origin தԝͷڌ Replica Τοδͷڌ Replica ಉظൣғ
4. ظ͞ΕΔݚڀՌ
21 ݚڀશମͷظ͞ΕΔߩݙ ɾطଘͷΞϓϦέʔγϣϯίʔυDBMSΛมߋͤͣɼ͔ͭੑೳʹେ ͖ͳӨڹΛ༩͑ͳ͍ͱ͍͏੍ͷͱ 1. ཧࢄΞϓϦέʔγϣϯͷՄ؍ଌੑΛ্Մೳ 2. ؍ଌ݁ՌΛར༻͠ԠੑೳΛ࠷େԽ͢ΔΑ͏ʹదԠతʹ੍ޚՄೳ ɾγεςϜཧऀͷෛ୲Λ૿ͣ͞ʹWebαʔϏεͷ৴པੑΛ্͞ ͤɼਓʑ͕WebαʔϏεΛշద͔ͭ࣋ଓతʹར༻Ͱ͖ΔΑ͏ʹͳΔ