Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
これまでの研究経過と希望する研究 / Research Plan for Doctoral C...
Search
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Research
1
390
これまでの研究経過と希望する研究 / Research Plan for Doctoral Course
令和2年度4月期入学 京都大学大学院 情報学研究科
博士後期課程 第2次学力検査 口頭試問
Yuuki Tsubouchi (yuuk1)
February 06, 2020
Tweet
Share
More Decks by Yuuki Tsubouchi (yuuk1)
See All by Yuuki Tsubouchi (yuuk1)
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
650
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
380
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
970
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
5.4k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
1.7k
クラウドのテレメトリーシステム研究動向2025年
yuukit
4
1.2k
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
520
Other Decks in Research
See All in Research
財務諸表監査のための逐次検定
masakat0
1
250
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
Attaques quantiques sur Bitcoin : comment se protéger ?
rlifchitz
0
140
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
160
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
180
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
190
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
Remote sensing × Multi-modal meta survey
satai
4
710
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
640
LLMアプリケーションの透明性について
fufufukakaka
0
130
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
Featured
See All Featured
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
Writing Fast Ruby
sferik
630
62k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
340
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
4 Signs Your Business is Dying
shpigford
187
22k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Making Projects Easy
brettharned
120
6.6k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
͜Ε·Ͱͷݚڀܦաͱر͢Δݚڀ ௶ ༎थ 20202݄6 ྩ24݄ظೖֶ ژେֶେֶӃ ใֶݚڀՊ ത࢜ޙظ՝ఔ ୈֶ̎࣍ྗݕࠪ ޱ಄ࢼ
2 1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ 2. ر͢Δݚڀͷഎܠͱత 3. ر͢Δݚڀͷ՝ͱํ๏ 4. ظ͞ΕΔݚڀՌ ࣍
1. ֶ࢜՝ఔɾम࢜՝ఔͰͷݚڀ
4 ֶ࢜՝ఔ: SHA-1ܭࢉγεςϜͷߴεϧʔϓοτԽ ɾഎܠ: ετϨʔδ্ͷσʔλอଘྔ͕૿େ͍ͯ͠Δ ɾ: σʔλͷॏෳՕॴΛഉআ͢Δ͜ͱʹΑΓɼσʔλอଘྔΛ ݮՄೳ͕ͩɼॏෳ෦ͷൃݟॲཧ͕ϘτϧωοΫͱͳΔ ɾఏҊ: ෳͷҟͳΔνϟϯΫʹର͢ΔॏෳൃݟॲཧΛSIMDԋࢉثʹ
ΑΓฒྻॲཧ͠ɼߴԽ͢Δ ɾ࣮ݧ: ઌߦख๏ͱൺֱͯ͠ɼ2.0ഒͷεϧʔϓοτ্Λୡͨ͠ ௶༎थ, ҏจ, ஔాਅੜ, ࢁ૱, ദַ, ഡݪ݉Ұ, ॏෳഉআετϨʔδͷͨΊͷ SHA-1ܭࢉγεςϜͷSSE໋ྩʹ ΑΔߴεϧʔϓοτԽ, ిࢠใ௨৴ֶձจࢽ D, 96(10), 2101-2109 2013.
5 म࢜՝ఔ: TCP/IPνΣοΫαϜͷGPUʹΑΔੑೳ্ ɾഎܠ: ίϯϐϡʔλωοτϫʔΫ͕ଳҬԽ͍ͯ͠Δ ɾ: OS෦ͷ௨৴ॲཧͷͨΊͷCPUෛՙ͕ߴ·ͬͯ ͍Δ ɾఏҊ: ௨৴ॲཧͷ͏ͪ௨৴σʔλʹର͢ΔνΣοΫαϜܭࢉΛGPU
ʹҕৡ͢Δ͜ͱʹΑΓɼCPUෛՙΛݮͤ͞Δ ɾ࣮ݧ: CPUʹΑΔνΣοΫαϜΛߦ͏ͱൺֱ͠ɼσʔλసૹε ϧʔϓοτ͕࠷େͰ13%্ ௶༎थ, ୩߶, ୩ޱٛ໌, தതོ, দԬໜొ, TCP/IPελοΫʹ͓͚ΔνΣοΫαϜܭࢉͷ GPU Φϑ ϩʔυʹΑΔ ੑೳ্ख๏, ిࢠใ௨৴ֶձٕज़ݚڀใࠂ, NS, ωοτϫʔΫγεςϜ, 113(244), pp.67-72 2013 10݄.
ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ ߴ৴པԽͷͨΊͷΞʔΩςΫνϟʹؔ͢Δݚڀ ത࢜՝ఔͰر͢Δݚڀͷ
2. ر͢Δݚڀͷഎܠͱత
8 WebαʔϏεͷཁٻͷߴԽ ・サービスの信頼性の期待値向上 ・冗⻑性の確保,アクセス増に対するスケーラビリティの向上 ɾ୯ҰͷࣄۀऀʹΑΔෳͷαʔϏεల։ ɾڞ௨෦Λ֤αʔϏεͰڞ༗͢Δ͜ͱͰαʔϏεಉ͕࢜௨৴ ɾ10୯ҐͷظؒͷαʔϏεఏڙ ɾػೳͷՃɼιϑτΣΞͷߋ৽ɼγεςϜߏͷ৽ͳͲΛܧଓ ɾར༻ऀͷ͔ΒΫϥυͷωοτϫʔΫԆΛॖ ɾཧతʹࢄͨ͠ڥʹ͓͚ΔࢄΞϓϦέʔγϣϯઃܭ͕ࠓޙඞ
ཁͱͳΔ => ۭؒతӨڹൣғͷ૿େ => ࣌ؒతӨڹൣғͷ૿େ
9 ཧࢄԽʹؔ͢Δҙࣝ γεςϜͷ෦ঢ়ଶͷѲ ͕͘͠ͳΔ ωοτϫʔΫԆͷ૿Ճ ɾγεςϜʹมߋΛՃ͑Δલ ʹɼϦεΫͷൣғΛݟੵΕ ͳ͘ͳΔ ɾϦεΫ͕ݦࡏԽͨ͠ͱ͖ʹɼ ݪҼͷಛఆ͕͘ͳΔ
ɾ֤ڌʹࢄ͢Δσʔλͷ ಉظ͕ͪ࣌ؒେ͖͘ͳΔ ɾσʔλϕʔε(DBMS)ͷҰ؏ ੑͱੑೳΛཱ྆ͤͮ͞Β͍ ߏཁૉͷ૿Ճ
10 ઌߦݚڀͱ՝: Մ؍ଌੑ ࣌ؒ࣠ํͷՄ؍ଌੑ ۭؒ࣠ํͷՄ؍ଌੑ ɾ࣌ܥྻσʔλϕʔεʹ֤छ ܭଌΛอଘ͢Δ ɾੑೳΛॏࢹ࣮ͯ͠Λ࣌ܥ ྻσʔλʹ࠷దԽ͍ͯ͠Δ ɾطଘͷDBMSΛར༻ͨ͠ޓ
ੑ֦ுੑ͕ࣦΘΕΔ ɾαϒγεςϜؒͷґଘؔΛ ࣗಈͰ͢Δ ɾطଘͷΞϓϦέʔγϣϯίʔ υͷมߋΛͱͳ͏ɼ͋Δ͍ ΞϓϦέʔγϣϯʹ༩͑Δ ੑೳӨڹ͕େ͖͍
11 ઌߦݚڀͱ՝: ੑೳͱσʔλҰ؏ੑ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖͍ڌ ʹಉظ͕࣌ؒ͞ΕΔ ɾ֤ڌؒͷσʔλΛඇಉظߋ৽ ɾσʔλҰ؏ੑʹର͢ΔΞϓϦ έʔγϣϯ։ൃऀͷൣғ͕ େ͖͘ͳΔ
ऑ͍Ұ؏ੑ(݁Ռ߹ੑ) Ԇͷେ͖ͳڥͰͷੑೳͱσʔλҰ؏ੑͷཱ྆ ڧ͍Ұ؏ੑ
ݚڀͷత ɾత: ཧతʹࢄͨ͠ΞϓϦέʔγϣϯͷ৴པੑ্ ɾ੍: طଘͷΞϓϦέʔγϣϯϛυϧΣΞͷίʔυΛมߋͤͣɼ ੑೳӨڹΛ͋ͨ͑ͳ͍ ɾ3ͭͷݚڀ՝ 1. ࣌ؒ࣠ͷՄ؍ଌੑ: ࣌ܥྻσʔλϕʔεͷੑೳͱޓੑͷཱ྆
2. ۭؒ࣠ͷՄ؍ଌੑ: ґଘؔΛෛՙ͔ͭཏతʹ 3. σʔλͷҰ؏ੑΛอূͭͭ͠ɼԠੑೳΛ࠷େԽ 12
3. ر͢Δݚڀͷ՝ͱํ๏
՝(1) ࣌ؒ࣠ํͷՄ؍ଌੑ ࣌ܥྻσʔλϕʔεʹ͓͚Δੑೳͱ֦ுੑͷཱ྆
15 ఏҊ(1): ՝ͱఏҊ ࣌ܥྻσʔλϕʔεͷ՝ ɾطଘͷDBMSΛར༻ͨ͠ޓ ੑ͕ࣦΘΕΔ ఏҊ ɾ୯ҰͷDBMSΛσʔλߏ୯ҐͰ ղ͠ɼૄ݁߹Խ ɾΠϯϝϞϦͱΦϯσΟεΫͷKVSΛ
֊Խͯ͠ॲཧͱอଘͷޮԽ ɾ֤σʔλߏʹରͯ͠طଘͷDBMS Λར༻Մೳ In-Memory KVS On—Disk KVS Tiering Single DBMS DBMS Index DBMS Log ఏҊΞʔΩςΫνϟ
՝(2) ۭؒ࣠ํʹ͓͚ΔՄ؍ଌੑ ґଘؔΛ͢Δ্Ͱ ཏੑͱΦʔόʔϔουΛཱ྆
17 ఏҊ(2): ιέοτࢹ ґଘؔͷ՝ ɾطଘͷΞϓϦέʔγϣϯ ίʔυͷมߋΛͱͳ͏ɼ ͋Δ͍ΞϓϦέʔγϣϯ ʹ༩͑ΔੑೳӨڹ͕େ͖͍ ఏҊ ɾશαʔό্ͰɼOSΧʔωϧͷTCP
ଓͷऴͰ͋ΔιέοτΛࢹ ɾιέοτࢹϓϩηεΛஔ͢Δͷ ΈͰՄೳ ɾιέοτࢹΞϓϦέʔγϣϯͷ ௨৴ʹׂΓ͜·ͣɼΦʔόϔου Kernel Process TCP Flows . . . User ιέοτࢹ Process
՝(3) ཧࢄڥʹ͓͚Δσʔλϕʔε ͷҰ؏ੑͱੑೳͷཱ྆
19 ఏҊ(3): σʔλͷಉظൣғΛదԠతʹܾఆ σʔλҰ؏ੑͱੑೳͷ՝ ɾ֤ڌؒͰσʔλΛಉظߋ৽ ɾωοτϫʔΫԆͷେ͖ͳڌ ʹಉظॲཧ͕͞ΕΔ ఏҊ ɾಡΈࠐΈॲཧͷΈͷॖʹண͠ɼ தԝͷڌʹॻ͖ࠐΈΛ͚Δ
ɾશڌͰಉظͤͣʹɼதԝͷڌ͔ ΒωοτϫʔΫԆ͕ҰఆΑΓখ ͍͞Ұ෦ͷڌͷΈಉظ ɾΞϓϦέʔγϣϯ୯ҐͷಡΈॻ͖ൺ ʹج͖ͮಉظൣғΛదԠతʹܾఆ Origin தԝͷڌ Replica Τοδͷڌ Replica ಉظൣғ
4. ظ͞ΕΔݚڀՌ
21 ݚڀશମͷظ͞ΕΔߩݙ ɾطଘͷΞϓϦέʔγϣϯίʔυDBMSΛมߋͤͣɼ͔ͭੑೳʹେ ͖ͳӨڹΛ༩͑ͳ͍ͱ͍͏੍ͷͱ 1. ཧࢄΞϓϦέʔγϣϯͷՄ؍ଌੑΛ্Մೳ 2. ؍ଌ݁ՌΛར༻͠ԠੑೳΛ࠷େԽ͢ΔΑ͏ʹదԠతʹ੍ޚՄೳ ɾγεςϜཧऀͷෛ୲Λ૿ͣ͞ʹWebαʔϏεͷ৴པੑΛ্͞ ͤɼਓʑ͕WebαʔϏεΛշద͔ͭ࣋ଓతʹར༻Ͱ͖ΔΑ͏ʹͳΔ