Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CTRオンライン予測システムのアーキテクチャ
Search
Yoshitomo Hayashi
September 27, 2017
Technology
2
4.5k
CTRオンライン予測システムのアーキテクチャ
「Ameba広告システムの裏側見せます - オレシカナイトvol3」発表資料です。
https://cyberagent.connpass.com/event/64176/
Yoshitomo Hayashi
September 27, 2017
Tweet
Share
More Decks by Yoshitomo Hayashi
See All by Yoshitomo Hayashi
Ameba DSPのOpen-Auctionにおける入札戦略
yyhayashi303
2
3k
進化する配信ロジックとDSP戦略
yyhayashi303
1
170
モブプロ導入で見えてきた効果@オレシカナイト
yyhayashi303
1
1.2k
CircuitBreakerの適用
yyhayashi303
0
1.7k
Other Decks in Technology
See All in Technology
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
150
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
7
2.5k
AIが実装する時代、人間は仕様と検証を設計する
gotalab555
1
670
Tebiki Engineering Team Deck
tebiki
0
24k
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
20260204_Midosuji_Tech
takuyay0ne
1
160
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
360
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
480
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
230
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
460
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
3k
Odyssey Design
rkendrick25
PRO
1
500
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
A Tale of Four Properties
chriscoyier
162
24k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Transcript
CTRΦϯϥΠϯ༧ଌ γεςϜͷΞʔΩςΫνϟ ΦϨγΧφΠτvol.3 גࣜձࣾαΠόʔΤʔδΣϯτ ྛ ۍ๎
ࣗݾհ ྛɹۍ๎ʢ͠Α͠ͱʣ αʔόʔαΠυΤϯδχΞ 2011 αΠόʔΤʔδΣϯτೖࣾ ೖࣾޙ͍͔ͭ͘ͷwebαʔϏε୲ 2015͔ΒMDHͰ৴ϩδοΫͷվળ
ࣗݾհ झຯ ίʔώʔ ՈͰυϦοϓͨ͠Γ ίʔϧυϒϦϡʔ࡞ͬͨΓ Netflix Ξχϝ ΥʔΩϯάɾσου
CTRΦϯϥΠϯ༧ଌ γεςϜͷΞʔΩςΫνϟ
CTRͱʁ
CTRͱ? CTRʢΫϦοΫʣ CTR = Click / Impression
ͳͥ༧ଌ͕ඞཁͳͷ͔ʁ
ࠂͷऩӹ ΫϦοΫ՝ۚ ࠂ1ΫϦοΫ͋ͨΓʓʓԁʢCPCʣ
ࠂͷऩӹ ΫϦοΫ՝ۚ ࠂ1ΫϦοΫ͋ͨΓʓʓԁʢCPCʣ ΑΓΫϦοΫ͞ΕΔ CPC͕ߴ͍ࠂΛ৴͍ͨ͠
ࠂΛϥϯΩϯά CTR × CPCʹΑΔϥϯΩϯά CTRόϯσΟοτΞϧΰϦζϜͰࢉग़ ࣮ͷimp, clickΛ༻ ࣮ͷूܭ [ࠂ ×
Ϣʔβʔଐੑ × ࠂ] ຖʹimp, clickΛܭଌ
͜Ε·ͰͷϥϯΩϯάͷ՝ ࣮͕গͳ͍߹ʹ͏·͘࠷దԽ͞Εͳ͍ Ϣʔβʔຖʹ࠷దͳࠂΛ৴ग़དྷ͍ͯͳ͍
ػցֶशʹΑΔCTR༧ଌ ଟ͘ͷૉੑΛՃՄೳ ࣮͕গͳͯ͋͘Δఔ༧ଌՄೳ ύʔιφϥΠζ͞ΕͨϥϯΩϯά
։ൃମ੍ ॳظ γεςϜΤϯδχΞ2ਓ σʔλαΠΤϯςΟετ1ਓʢळ༿ݪϥϘʣ ݱࡏ γεςϜΤϯδχΞ2ʙ3ਓ σʔλαΠΤϯςΟετ2ਓʢळ༿ݪϥϘ1ਓʣ
ΞʔΩςΫνϟ
ΞʔΩςΫνϟ ֶशσʔλ JoinࡁΈͷ ϩά ϩά ϩά ػցֶश ϝτϦΫε Ϟσϧ ϑΝΠϧ
Ϟσϧ ϑΝΠϧ Stream Aggregator Data Joiner Learner Predictor ModelStore
Data-Joiner
Data-Joinerͷׂ ࠂ͕click͞Ε͔ͨͲ͏͔Λఆ͢Δ imp౸ୡޙɺҰఆظؒclickͷ౸ୡΛͭ impͱclickͷσʔλͷࠩҟΛແ͘͢ refererͷʹࠩҟ͕͋ͬͨ
Apache IgniteΛ༻࣮ͨ͠ Event Notifications imp click Stream Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ imp click Stream
Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ put-event clickͷ߹ରԠ͢Δ impΛݕࡧ͠click͞Εͨ
impͱͯ͠Aggregatorʹૹ৴ imp click Stream Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ put-event clickͷ߹ରԠ͢Δ impΛݕࡧ͠click͞Εͨ
impͱͯ͠Aggregatorʹૹ৴ expired-event 5ܦͬͯclick͕དྷͳ͍ ߹click͞Εͳ͔ͬͨimpͱ ͯ͠Aggregatorʹૹ৴ imp click Stream Data Joiner Aggregator
Aggregator
Aggregatorͷׂ ֶशʹඞཁͳσʔλΛऩू ϩά͔Βऔಘग़དྷΔͷ ϩά͔ΒऔಘͰ͖ͳ͍ͷ ऩूͨ͠σʔλΛLearnerʹૹΔ σʔλαϯϓϦϯά͠100݅ͣͭ
ϩά͔ΒऔಘՄೳͳσʔλ Ϣʔβʔͷใ UA, IPΞυϨε, referer, ϦλήϢʔβʔ͔ etc. ࠂͷใ ۀछID, ࠂओID,
ΫϦΤΠςΟϒID etc. ໘ͷใ ࠂID, ϝσΟΞID etc.
ϩά͔ΒऔಘෆՄೳͳσʔλ Ϣʔβʔͷใ σϞάϥʢੑผɾྸʣ ಠࣗʹ࡞ͨ͠ૉੑ ߦಈཤྺΛϕʔεʹͨ͠ϢʔβʔΫϥελ ࠂςΩετΫϥελ
Learner
Learnerͷׂ Aggregator͔Βड͚औͬͨσʔλΛ༻͠ϞσϧΛߏங͢Δ ϞσϧΛߏங͢ΔίΞ෦C++ʢσʔλαΠΤϯςΟ ετ୲ʣ 15ִؒͰϞσϧΛߋ৽ ϞσϧϑΝΠϧͰϞσϧετΞʢS3ʣʹอଘ ػցֶशϝτϦΫεʢauroc, logloss etc.ʣΛDBʹอଘ
Learner͕ੜ͢Δ ϞσϧϑΝΠϧ ֶश༻ϚελϑΝΠϧʢ12ִ࣌ؒؒͰߋ৽ʣ Learner͜ͷϑΝΠϧΛ༻ֶͯ͠श͢Δ ༧ଌ༻ϚελϑΝΠϧʢ12ִ࣌ؒؒͰߋ৽ʣ Predictor͕CTRΛ༧ଌ͢Δࡍʹ༻͢Δ ༧ଌ༻ύονϑΝΠϧ ༧ଌ༻ϚελϑΝΠϧ͔ΒͷࠩϑΝΠϧ ͜ͷϑΝΠϧ͕LearnerʹΑͬͯ15ִؒͰߋ৽͞ΕΔ
Predictor
Predictor ༧ଌʹඞཁͳσʔλΛड͚औΓ༧ଌCTRΛฦ͢API 15ִؒͰϞσϧετΞ͔Β࠷৽ͷϞσϧϑΝΠ ϧΛऔಘ͠ߋ৽͢Δ
༧ଌ͕։࢝ग़དྷΔ·Ͱ ىಈ࣌ʹϚελϑΝΠϧΛಡΈࠐΉ ϚελϑΝΠϧಡΈࠐΈޙ͔Β༧ଌՄೳ ϚελϑΝΠϧͷ࠷ऴߋ৽͔࣌Βͷࠩύον ϑΝΠϧΛద༻͍ͯ͘͠ʢ࠷େͰ47ϑΝΠϧʣ 1ύονϑΝΠϧ5ʙ6ඵͰద༻ՄೳͳͷͰɺ5 ҎͰྃ
CTR༧ଌγεςϜಋೖޙ
CPMൺֱ ϥϯμϜ ࣮CTR ༧ଌCTR ࣮CTRରൺ7ˋվળ ϥϯμϜରൺ50ˋվળ
CTRൺֱ ࣮CTRରൺ6ˋվળ ϥϯμϜରൺ8ˋվળ ϥϯμϜ ࣮CTR ༧ଌCTR
͓·͚
Real-Time Optimizer ʢROʣ
Real- Time OptimizerʢROʣ 20176݄ϦϦʔε ඪCPAʹ߹ΘͤͯCPCΛࣗಈௐ͢Δ
CPCͷࢉग़ํ๏ CPC = ඪCPA × CVR ඪCPA 1CVಘΔͷʹࢧͬͯྑ͍අ༻ ࠂओ͕ܾఆ CVRʢίϯόʔδϣϯʣ
CV / Click
͜Ε·ͰͷCVRࢉग़ํ๏ աڈ࣮ΛݩʹώϡʔϦεςΟοΫͳCVRࢉग़ ࠂ × ΞΧϯτຖʹCVRΛࢉग़ ϦλήϢʔβʔͷ߹ิਖ਼Ϩʔτ
ݱঢ়ͷ՝ CV͕ग़ʹ͍͘Ҋ݅ͷ߹ʹCVRͷਫ਼͕ѱ͍ ৽نΞΧϯτͷ߹࣮͕ແ͍ ۀछશମͷ࣮Λࢀর ৽نࠂͷ߹ʹ࣮͕ͳ͍ ࠂάϧʔϓͷ࣮Λࢀর
CTR༧ଌγεςϜͷࢿ࢈Λ ׆༻ͨ͠CVR༧ଌγεςϜ
CVR༧ଌγεςϜ Ϟσϧͷߏங࣍όονʢBatch-Learnerʣ Clickൃੜ͔ΒCVൃੜ·Ͱͷ͕͍࣌ؒͷͰϦΞ ϧλΠϜͰֶश͠ͳ͍ LearnerͷίΞ෦ɺੜ͞ΕΔϞσϧϑΝΠ ϧɺPredictorͦͷ··༻
ΞʔΩςΫνϟ Predictor ModelStore Batch-Learner ϞσϧϑΝΠϧ ϞσϧϑΝΠϧ ػցֶश ϝτϦΫε ֶशσʔλ
CVR༧ଌͷঢ়گ ༧ଌCVR ࣮CVR ࣮CVRରൺ3ˋվળ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠