$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CTRオンライン予測システムのアーキテクチャ
Search
Yoshitomo Hayashi
September 27, 2017
Technology
2
4.4k
CTRオンライン予測システムのアーキテクチャ
「Ameba広告システムの裏側見せます - オレシカナイトvol3」発表資料です。
https://cyberagent.connpass.com/event/64176/
Yoshitomo Hayashi
September 27, 2017
Tweet
Share
More Decks by Yoshitomo Hayashi
See All by Yoshitomo Hayashi
Ameba DSPのOpen-Auctionにおける入札戦略
yyhayashi303
2
2.9k
進化する配信ロジックとDSP戦略
yyhayashi303
1
170
モブプロ導入で見えてきた効果@オレシカナイト
yyhayashi303
1
1.2k
CircuitBreakerの適用
yyhayashi303
0
1.7k
Other Decks in Technology
See All in Technology
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
regrowth_tokyo_2025_securityagent
hiashisan
0
240
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
140
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
160
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
5
1.5k
[JAWS-UG 横浜支部 #91]DevOps Agent vs CloudWatch Investigations -比較と実践-
sh_fk2
2
260
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
360
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
1
730
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
380
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
490
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
180
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.1k
Featured
See All Featured
[SF Ruby Conf 2025] Rails X
palkan
0
520
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Faster Mobile Websites
deanohume
310
31k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
KATA
mclloyd
PRO
32
15k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Transcript
CTRΦϯϥΠϯ༧ଌ γεςϜͷΞʔΩςΫνϟ ΦϨγΧφΠτvol.3 גࣜձࣾαΠόʔΤʔδΣϯτ ྛ ۍ๎
ࣗݾհ ྛɹۍ๎ʢ͠Α͠ͱʣ αʔόʔαΠυΤϯδχΞ 2011 αΠόʔΤʔδΣϯτೖࣾ ೖࣾޙ͍͔ͭ͘ͷwebαʔϏε୲ 2015͔ΒMDHͰ৴ϩδοΫͷվળ
ࣗݾհ झຯ ίʔώʔ ՈͰυϦοϓͨ͠Γ ίʔϧυϒϦϡʔ࡞ͬͨΓ Netflix Ξχϝ ΥʔΩϯάɾσου
CTRΦϯϥΠϯ༧ଌ γεςϜͷΞʔΩςΫνϟ
CTRͱʁ
CTRͱ? CTRʢΫϦοΫʣ CTR = Click / Impression
ͳͥ༧ଌ͕ඞཁͳͷ͔ʁ
ࠂͷऩӹ ΫϦοΫ՝ۚ ࠂ1ΫϦοΫ͋ͨΓʓʓԁʢCPCʣ
ࠂͷऩӹ ΫϦοΫ՝ۚ ࠂ1ΫϦοΫ͋ͨΓʓʓԁʢCPCʣ ΑΓΫϦοΫ͞ΕΔ CPC͕ߴ͍ࠂΛ৴͍ͨ͠
ࠂΛϥϯΩϯά CTR × CPCʹΑΔϥϯΩϯά CTRόϯσΟοτΞϧΰϦζϜͰࢉग़ ࣮ͷimp, clickΛ༻ ࣮ͷूܭ [ࠂ ×
Ϣʔβʔଐੑ × ࠂ] ຖʹimp, clickΛܭଌ
͜Ε·ͰͷϥϯΩϯάͷ՝ ࣮͕গͳ͍߹ʹ͏·͘࠷దԽ͞Εͳ͍ Ϣʔβʔຖʹ࠷దͳࠂΛ৴ग़དྷ͍ͯͳ͍
ػցֶशʹΑΔCTR༧ଌ ଟ͘ͷૉੑΛՃՄೳ ࣮͕গͳͯ͋͘Δఔ༧ଌՄೳ ύʔιφϥΠζ͞ΕͨϥϯΩϯά
։ൃମ੍ ॳظ γεςϜΤϯδχΞ2ਓ σʔλαΠΤϯςΟετ1ਓʢळ༿ݪϥϘʣ ݱࡏ γεςϜΤϯδχΞ2ʙ3ਓ σʔλαΠΤϯςΟετ2ਓʢळ༿ݪϥϘ1ਓʣ
ΞʔΩςΫνϟ
ΞʔΩςΫνϟ ֶशσʔλ JoinࡁΈͷ ϩά ϩά ϩά ػցֶश ϝτϦΫε Ϟσϧ ϑΝΠϧ
Ϟσϧ ϑΝΠϧ Stream Aggregator Data Joiner Learner Predictor ModelStore
Data-Joiner
Data-Joinerͷׂ ࠂ͕click͞Ε͔ͨͲ͏͔Λఆ͢Δ imp౸ୡޙɺҰఆظؒclickͷ౸ୡΛͭ impͱclickͷσʔλͷࠩҟΛແ͘͢ refererͷʹࠩҟ͕͋ͬͨ
Apache IgniteΛ༻࣮ͨ͠ Event Notifications imp click Stream Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ imp click Stream
Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ put-event clickͷ߹ରԠ͢Δ impΛݕࡧ͠click͞Εͨ
impͱͯ͠Aggregatorʹૹ৴ imp click Stream Data Joiner Aggregator
Apache IgniteΛ༻࣮ͨ͠ Event Notifications put-event impͷ߹ TTLΛ5ʹઃఆ͠อଘ put-event clickͷ߹ରԠ͢Δ impΛݕࡧ͠click͞Εͨ
impͱͯ͠Aggregatorʹૹ৴ expired-event 5ܦͬͯclick͕དྷͳ͍ ߹click͞Εͳ͔ͬͨimpͱ ͯ͠Aggregatorʹૹ৴ imp click Stream Data Joiner Aggregator
Aggregator
Aggregatorͷׂ ֶशʹඞཁͳσʔλΛऩू ϩά͔Βऔಘग़དྷΔͷ ϩά͔ΒऔಘͰ͖ͳ͍ͷ ऩूͨ͠σʔλΛLearnerʹૹΔ σʔλαϯϓϦϯά͠100݅ͣͭ
ϩά͔ΒऔಘՄೳͳσʔλ Ϣʔβʔͷใ UA, IPΞυϨε, referer, ϦλήϢʔβʔ͔ etc. ࠂͷใ ۀछID, ࠂओID,
ΫϦΤΠςΟϒID etc. ໘ͷใ ࠂID, ϝσΟΞID etc.
ϩά͔ΒऔಘෆՄೳͳσʔλ Ϣʔβʔͷใ σϞάϥʢੑผɾྸʣ ಠࣗʹ࡞ͨ͠ૉੑ ߦಈཤྺΛϕʔεʹͨ͠ϢʔβʔΫϥελ ࠂςΩετΫϥελ
Learner
Learnerͷׂ Aggregator͔Βड͚औͬͨσʔλΛ༻͠ϞσϧΛߏங͢Δ ϞσϧΛߏங͢ΔίΞ෦C++ʢσʔλαΠΤϯςΟ ετ୲ʣ 15ִؒͰϞσϧΛߋ৽ ϞσϧϑΝΠϧͰϞσϧετΞʢS3ʣʹอଘ ػցֶशϝτϦΫεʢauroc, logloss etc.ʣΛDBʹอଘ
Learner͕ੜ͢Δ ϞσϧϑΝΠϧ ֶश༻ϚελϑΝΠϧʢ12ִ࣌ؒؒͰߋ৽ʣ Learner͜ͷϑΝΠϧΛ༻ֶͯ͠श͢Δ ༧ଌ༻ϚελϑΝΠϧʢ12ִ࣌ؒؒͰߋ৽ʣ Predictor͕CTRΛ༧ଌ͢Δࡍʹ༻͢Δ ༧ଌ༻ύονϑΝΠϧ ༧ଌ༻ϚελϑΝΠϧ͔ΒͷࠩϑΝΠϧ ͜ͷϑΝΠϧ͕LearnerʹΑͬͯ15ִؒͰߋ৽͞ΕΔ
Predictor
Predictor ༧ଌʹඞཁͳσʔλΛड͚औΓ༧ଌCTRΛฦ͢API 15ִؒͰϞσϧετΞ͔Β࠷৽ͷϞσϧϑΝΠ ϧΛऔಘ͠ߋ৽͢Δ
༧ଌ͕։࢝ग़དྷΔ·Ͱ ىಈ࣌ʹϚελϑΝΠϧΛಡΈࠐΉ ϚελϑΝΠϧಡΈࠐΈޙ͔Β༧ଌՄೳ ϚελϑΝΠϧͷ࠷ऴߋ৽͔࣌Βͷࠩύον ϑΝΠϧΛద༻͍ͯ͘͠ʢ࠷େͰ47ϑΝΠϧʣ 1ύονϑΝΠϧ5ʙ6ඵͰద༻ՄೳͳͷͰɺ5 ҎͰྃ
CTR༧ଌγεςϜಋೖޙ
CPMൺֱ ϥϯμϜ ࣮CTR ༧ଌCTR ࣮CTRରൺ7ˋվળ ϥϯμϜରൺ50ˋվળ
CTRൺֱ ࣮CTRରൺ6ˋվળ ϥϯμϜରൺ8ˋվળ ϥϯμϜ ࣮CTR ༧ଌCTR
͓·͚
Real-Time Optimizer ʢROʣ
Real- Time OptimizerʢROʣ 20176݄ϦϦʔε ඪCPAʹ߹ΘͤͯCPCΛࣗಈௐ͢Δ
CPCͷࢉग़ํ๏ CPC = ඪCPA × CVR ඪCPA 1CVಘΔͷʹࢧͬͯྑ͍අ༻ ࠂओ͕ܾఆ CVRʢίϯόʔδϣϯʣ
CV / Click
͜Ε·ͰͷCVRࢉग़ํ๏ աڈ࣮ΛݩʹώϡʔϦεςΟοΫͳCVRࢉग़ ࠂ × ΞΧϯτຖʹCVRΛࢉग़ ϦλήϢʔβʔͷ߹ิਖ਼Ϩʔτ
ݱঢ়ͷ՝ CV͕ग़ʹ͍͘Ҋ݅ͷ߹ʹCVRͷਫ਼͕ѱ͍ ৽نΞΧϯτͷ߹࣮͕ແ͍ ۀछશମͷ࣮Λࢀর ৽نࠂͷ߹ʹ࣮͕ͳ͍ ࠂάϧʔϓͷ࣮Λࢀর
CTR༧ଌγεςϜͷࢿ࢈Λ ׆༻ͨ͠CVR༧ଌγεςϜ
CVR༧ଌγεςϜ Ϟσϧͷߏங࣍όονʢBatch-Learnerʣ Clickൃੜ͔ΒCVൃੜ·Ͱͷ͕͍࣌ؒͷͰϦΞ ϧλΠϜͰֶश͠ͳ͍ LearnerͷίΞ෦ɺੜ͞ΕΔϞσϧϑΝΠ ϧɺPredictorͦͷ··༻
ΞʔΩςΫνϟ Predictor ModelStore Batch-Learner ϞσϧϑΝΠϧ ϞσϧϑΝΠϧ ػցֶश ϝτϦΫε ֶशσʔλ
CVR༧ଌͷঢ়گ ༧ଌCVR ࣮CVR ࣮CVRରൺ3ˋվળ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠