Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ライセンスの呪いを祓う 続編 / License-free Deep Learning for...
Search
Henry Cui
January 27, 2023
Programming
0
220
ライセンスの呪いを祓う 続編 / License-free Deep Learning for Images
Henry Cui
January 27, 2023
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
1
190
Direct Preference Optimization
zchenry
0
370
Diffusion Model with Perceptual Loss
zchenry
0
390
レンズの下のLLM / LLM under the Lens
zchenry
0
180
Go with the Prompt Flow
zchenry
0
160
Mojo Dojo
zchenry
0
200
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
560
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
240
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
120
Other Decks in Programming
See All in Programming
AIともっと楽するE2Eテスト
myohei
6
2.6k
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
190
Node-RED を(HTTP で)つなげる MCP サーバーを作ってみた
highu
0
120
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
11k
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
170
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
360
High-Level Programming Languages in AI Era -Human Thought and Mind-
hayat01sh1da
PRO
0
770
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
12
4.4k
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
650
ソフトウェア品質を数字で捉える技術。事業成長を支えるシステム品質の マネジメント
takuya542
1
13k
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
470
Python型ヒント完全ガイド 初心者でも分かる、現代的で実践的な使い方
mickey_kubo
1
110
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Building an army of robots
kneath
306
45k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Site-Speed That Sticks
csswizardry
10
690
Fireside Chat
paigeccino
37
3.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
ライセンスの呪いを祓う 続編 機械学習の社会実装勉強会第19回 Henry 2023/1/28
目標とモチベーション ▪ 目標 • 機械的に・自動的に生成された画像のみで、汎用的な画像認識モデ ルを学習したい ▪ 機械学習の社会実装的なモチベーション • pre-trained
model・foundation model を利用したいときに、それに関 わるライセンス問題をクリアにしたい • 自分で大規模画像データセットを集める手間を省きたい ▪ 機械学習の研究的なモチベーション • 機械学習モデルの学習プロセスの解明 • 自然画像ではない画像でどこまで特徴量抽出ができるかの解明 2
前回の内容 ▪ 数式に従って生成された画像のみを使って、汎用的な特徴量 抽出能力を持った画像認識モデルを学習できる • Fractal • Contour 3
今日の内容 ▪ 同じ著者グループによる2本の論文紹介 • Learning to See by Looking at
Noise, Baradad et al., NeurIPS 2021 • Procedural Image Programs for Representation Learning, Baradad et al., NuerIPS 2022 ▪ 先週との違い • 幅広い生成法 • ラベルなしで対照学習 • 主にカラフルな画像を使う 4
Baradad et al. 2021 5
Baradad et al. 2021 ▪ 5種類の生成法を考える a. 法則に従う ▪ FractalやCG等
b. Dead Leavesモデル ▪ ランダムのシェープで覆う c. 統計的画像生成 ▪ Spectrum:フーリエ変換がリアル画像のフーリエ変換と似る ▪ Wavelet-marginal model:wavelet係数が制約を満たす d. GANs ▪ StyleGAN:初期化したモデルで生成やそれに統計的制約をつける e. 特徴量可視化 ▪ ResNet50を使う 6
全体的な性能 ▪ AlexNetモデルとInfoNCE損失 ▪ 一般的にStyleGANで生成された画像を使ったほうが性能が よい 7
意味のある特徴量抽出ができる 8
Ablation Study ▪ 以下の2点が大事 • 統計的に自然画像に似ている • 程よい多様性を持つ 9
Baradad et al. 2022 ▪ Baradad et al. 2021の弱点 •
良いモデルを学習するには、生成プロセスを丁寧に調整する必要があ る • 生成手順が複雑で、手間がかかる ▪ 提案法 • OpenGLの短いコードを大量に集める • GPUで高性能並列で高速に画像生成する • 深く制御せずに学習する 10
Baradad et al. 2022 11
データ収集 ▪ 2つのソースから • Twitter:コードが短くて、より複雑な画像を生成 • Shadertoy:コードが長くて、よりシンプルな画像を生成 ▪ 2つのデータセットに •
Shaders1k:Twitterのみ • Shaders21k:TwitterとShadertoy両方 ▪ クラスラベルも • 同じコードでシードを変えて生成 12
分類性能 ▪ 教師付き分類(CE)、教師付き対照学習(SupCon)、教師なし 対照学習(SimCLR) ▪ log関数に従う 13
大規模対照学習 14
Shaderで性能良くするために 15 ▪ 生成画像間の多様性 ▪ 複数のShaderでは、多様性を持つ部分集合を選べば良い