Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ZHGDG_HOA.6_分布式元数据快速同步算法
Search
Zoom.Quiet
May 12, 2014
Technology
0
190
ZHGDG_HOA.6_分布式元数据快速同步算法
140511 #GDG #Zhuhai
分布式元数据快速同步算法
Zoom.Quiet
May 12, 2014
Tweet
Share
More Decks by Zoom.Quiet
See All by Zoom.Quiet
PyCon2014China-Zhuhai-high performance
zoomquiet
0
150
PyCon2014China-Zhuhai-meta programming
zoomquiet
1
120
PyCon2014China-Zhuhai-bpm.py
zoomquiet
0
99
PyCon2014China-Zhuhai-luna kv db
zoomquiet
0
88
PyCon2014China-Zhuhai-seed studio
zoomquiet
0
87
PyCon2014China-Zhuhai-Docker Registry Build By Python
zoomquiet
0
100
PyCon2014China-Zhuhai-jeff
zoomquiet
0
78
PyCon2014China-Zhuhai-pythonic front-end
zoomquiet
0
110
DevFest2014-Zhuhai-Polymer
zoomquiet
0
400
Other Decks in Technology
See All in Technology
本当に使える?AutoUpgrade の新機能を実践検証してみた
oracle4engineer
PRO
1
120
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
940
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
2.3k
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
1
400
AIエージェントの継続的改善のためオブザーバビリティ
pharma_x_tech
6
1.4k
Microsoft Build 2025 技術/製品動向 for Microsoft Startup Tech Community
torumakabe
1
200
AWS CDK 実践的アプローチ N選 / aws-cdk-practical-approaches
gotok365
4
500
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
150
AIのAIによるAIのための出力評価と改善
chocoyama
0
510
変化する開発、進化する体系時代に適応するソフトウェアエンジニアの知識と考え方(JaSST'25 Kansai)
mizunori
0
140
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
130
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
150
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
Code Reviewing Like a Champion
maltzj
524
40k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Agile that works and the tools we love
rasmusluckow
329
21k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Building Applications with DynamoDB
mza
95
6.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
A better future with KSS
kneath
239
17k
The Cult of Friendly URLs
andyhume
79
6.4k
Transcript
一种分布式系统元数据 快速同步算法 廖杰
[email protected]
https://github.com/richardliao
目录 背景 1 1 实现 2 2 效率分析 3 3
问答 4 4
GDG livin ZhuHai life ;-)
背景 1 1
背景 • 开源项目 swarmstorage • https://github.com/richardliao/swarmstorage • Content Addressable 分布式对象存储
• 用golang编写
背景: 系统特性 • 分布式 • 存储content addressable对象 • 对象内容不可修改 •
去POSIX文件系统
背景: 系统特性 • Storage POD
背景: 系统特性 • 超大规模 • 去中心化 • Shared nothing •
高读写性能 • 高扩展性 • 高可用 • 运维友好
背景: CAP理论 • 大多数系统 – 选择最终一致性,以确保可用性和读写性能 – 复杂 – 脆弱
背景: CAP理论 • swarmstorage – 做减法 – 专注存储的核心 – 确保可用性和读写性能
– 同时确保数据的高强度一致性 – Content Addressable数据本身
元数据 • 节点存储的文件对象的哈希值 • 存储在每个节点内存中 • 用于查询文件对象 • 用于副本节点间同步文件对象
元数据同步需求 • 元数据的数据量大 • 同步频率高 • 动态修改
征求算法 • 大家的想法?
rsync同步算法 • 内容变化后,需要重新计算 • 同步时不能改变内容
BloomFilter • 可以支持动态数据 • 同步需要传输完整的过滤器集合,数据量较大 • 进行数据匹配时,计算量巨大 • False Positive问题
ODS(Orthogonal Digest Sync)算法 • 支持动态变化的内容同步 • 内容变化后,同步计算量极小 • 可以实时计算同步数据 •
同步数据量小 • 同步数据量稳定 • 适用于高度同步的节点间, 定时同步少量变化状态
实现 2 2
正交摘要 • 元数据摘要: 对原始数据在某个维度的投影 • 对原始数据在正交的多个维度上进行投影 • BloomFilter
摘要算法 • 每条元数据(哈希值)为20字节字符串 • 全体元数据按固定bucket分割 • 摘要数据是离散的 • bucket数量: 分辨率
• 第1,2维度没有数据重叠: 正交 • 第1个维度: 取前2个字节,共分割为65536个 bucket • 第2个维度: 取后2个字节
摘要算法 • 对每个bucket内的元数据 • 计算CRC32值, 4字节 • 每个维度字节:65536*4 = 262144
• 全部维度字节: 262144*2 = 524288, 512KB
更新摘要 • 增加文件对象 • 删除文件对象 • 更新对应bucket的摘要值
更新摘要 • 假设每个分区大小为3T, 平均每个文件1M, 存储 的元数据 – 3T/1M = 3145728
– 3145728*40/(1024*1024) = 120MB • 对象均匀分布 • 需要更新48个对象个数 – 3145728/65536 = 48 • 需要计算的字节数 – 48*20*2 = 1920字节的CRC32
同步摘要 • 源节点将一个分区的完整摘要推送到目标节点 • 目标节点按相同维度对比,过滤出元数据 – 有差异的摘要 – 同时出现在2个维度 –
即可能在源节点缺失的元数据(False Negative) • 返回差异的元数据 • 源节点跟本地元数据匹配,发现真实缺失的文件 对象
效率分析 3 3
适用场景 • 适用于高度相似的节点同步 • 如果差异对象1024个, 多传输元数据(False Negative) – (1024/65536)^2 =
1/4096 – 3145728*1/4096 = 768 个 – 768*20 = 15360, 15KB
中度适用场景 • 如果差异对象8192个, 多传输元数据 – (8192/65536)^2 = 1/16 – 3145728*1/16
= 196608 个 – 196608*20 = 3932160, 3.9MB
劣化场景 • 如果节点间差异的文件对象超过一定数量,效率 急剧劣化 – 如果差异对象超过65536 – 每个bucket都有差异,则需要返回所有元数据
同步内容中速变化 • 同步时间为1秒 • 千兆网络, 全部写入一个分区 • 128新文件/秒 • 多传输元数据
– (128/65536)^2 = 1/512 – 3145728*1/512 = 6144 个 – 6144*20 = 122880, 120KB
同步内容高速变化 • 同步时间为1秒 • 10千兆网络, 全部写入一个分区 • 1280新文件/秒 • 多传输元数据
– (1280/65536)^2 = 1/51 – 3145728*1/51 = 61680 个 – 61680*20 = 1233600, 1.2MB
适应更快速变化 • 增加维度 – 取3个维度 – 摘要总量 256*256*4*3 = 786432,
786KB – 准确度提高256倍 – 劣化情况无明显改善
适应更快速变化 • 提高分辨率, 增加bucket数量 – 取2.5个字节, 1048576 – 适用变化场景提高 16*16
= 256倍(327680新文 件/秒) – 摘要总量 256*256*16*4*2 = 8388608, 8MB – 劣化情况明显改善
问答 4 4
祝: 码不停提 !-) Happy Hacking
blog.zhgdg.org