$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:MoverScore: Text Generation Evaluating wit...
Search
Taichi Aida
October 14, 2019
Technology
0
550
文献紹介:MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance
Taichi Aida
October 14, 2019
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
意味を表すベクトル表現を用いたテキスト分析
a1da4
0
66
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
240
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
360
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
280
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
400
新入生向けチュートリアル:文献のサーベイv2
a1da4
16
11k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
200
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
310
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
120
Other Decks in Technology
See All in Technology
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
680
RAG/Agent開発のアップデートまとめ
taka0709
0
170
5分で知るMicrosoft Ignite
taiponrock
PRO
0
350
乗りこなせAI駆動開発の波
eltociear
1
1.1k
初めてのDatabricks AI/BI Genie
taka_aki
0
120
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
6
400
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
120
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
350
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
0
680
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
620
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
7.9k
Producing Creativity
orderedlist
PRO
348
40k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Embracing the Ebb and Flow
colly
88
4.9k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
A Tale of Four Properties
chriscoyier
162
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Automating Front-end Workflow
addyosmani
1371
200k
Thoughts on Productivity
jonyablonski
73
5k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Transcript
จݙհʢʣ MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth
Mover Distance Wei Zhao† , Maxime Peyrard† , Fei Liu‡ , Yang Gao† , Christian M. Meyer† , Steffen Eger† EMNLP2019 Ԭٕज़Պֶେֶ ࣗવݴޠॲཧݚڀࣨɹ ૬ాɹଠҰ
Abstract • ੜͷλεΫʹ͓͍ͯɺؤڧͳධՁईΛௐࠪ • จ຺Λߟྀͨ͠୯ޠࢄදݱ ͱ Word Mover’s Distance ͷΈ߹Θ͕ͤ࠷ྑ͔ͬͨ
• ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 2
Related work • ৭ʑͳධՁख๏ʢ1ʣ • ཁɿROUGE(Lin 2004) • ػց༁ɿBLEU(Papinemi 2002),
RUSE(Shimanaka 2018) • Image CaptioningɿBLEU, CIDEr(Vedantam 2015), SPICE(Anderson 2016) 3 #-&6͔ͳ͍
Related work • ৭ʑͳධՁख๏ʢ2ʣ • ҙຯతྨࣅɿ “BERTScore”(Zhang 2019) • ༁ɿڭࢣ͋Γɾڭࢣͳ͠
BERT ࢄදݱ(Mathur 2019) • ཁɺΤοηΠ࠾ɿELMo + Sentence Mover’s Simirality(Clark 2019) 4 จ຺Λߟྀͨ͠ࢄදݱ $POUFYUVBMJ[FESFQSFTFOUBUJPO Λ༻͍Δख๏͕૿͖͑ͯͨ ࣮ݧͷ#BTFMJOFʹग़͖ͯ·͢
Method • ༷ʑͳੜλεΫΛධՁͰ͖Δࢦඪ(MoverScore)Λௐࠪ • ੜจͱࢀরจͷྨࣅʢʁʣΛଌΔ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ग़ྗจͱࢀরจͷҙຯతڑɿWord
Mover's Distance 5
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 6 /-* 1BSBQISBTJOH #&35 &-.P #&35
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 7 #&35 &-.P
Method • Aggregation ʢ౷߹ํ๏ʣ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ֤୯ޠ֤͔ΒͦΕͧΕҟͳΔϕΫτϧ͕͞ΕΔ •
Power MeansɿฏۉΛऔΓ ( )ɺconcat • Routing Mechanismɿৄ͘͠(Zhang 2018) p p = 1, ± ∞ 8
Method • ग़ྗจͱࢀরจͷҙຯతڑ • Word Mover's Distance (WMD) • Sentence
Mover's Distance (SMD) • ઌ΄ͲͷΈ߹ΘͤΛɺWMD, SMD ͦΕͧΕͰݕূ͢Δ 9
Experiment • Tasks • ػց༁ • ཁ • ରʢλεΫࢤʣ •
Image Captioning 10 ʢࢀরจɺෳͷγεςϜʹΑΔग़ྗจʣͷϖΞ γεςϜͷग़ྗจʹਓखධՁ͕͞Ε͍ͯΔ ʲධՁࢦඪɺMoverScore ͰΔ͜ͱʳ ɾγεςϜͷग़ྗจΛධՁ ɾਓखධՁͱͷ૬ؔΛݟΔ
Experiment • ػց༁ • DatasetɿWMT2017 • ࢀՃγεςϜͷग़ྗจʹɺ࠷Ͱ15ਓͷਓखධՁ • BaselinesɿSentBLEU, METEOR++,
RUSE, BERTScore(Zhang 2019) 11
Result • WMD+BERT+MNLI+PMeans ͕ Baseline Λ্ճΔ 12
Result • Sentence Representation Ͱใ͕ࣦΘΕΔʁ 13
Experiment • ཁ • DatasetɿTAC-2008, TAC-2009 • Responsivenessɿ༰ʴจ๏తͳ࣭ • Pyramidɿࢀরจʹؚ·ΕΔॏཁͳ༰͕ͲΕ͚ͩଟ͘Χόʔ͞
Ε͍ͯΔ͔ • BaselinesɿROUGE-1, ROUGE-2, (Peyrard 2017), BERTScore(Zhang 2019) S3 best 14 ڭࢣ͋ΓͷධՁࢦඪ
Result • WMD+BERT+MNLI+PMeans Ͱ Baselines Λ্ճΔ 15
Experiment • ରʢλεΫࢤʣ • DatasetɿBAGEL, SFHOTEL • Informativeness (Inf)ɿఏڙ͢Δใྔ •
Naturalness (Nat)ɿਓͷԠͷۙ͞ • Quality (Qual)ɿྲྀெੑɾจ๏ • BaselinesɿBLEU, METEOR, BERTScore(Zhang 2019) 16
Result • શମతʹ૬͕͍͕ؔɺఏҊख๏ͦͷதͰߴ͍ํ 17
Experiment • Image Captioning • DatasetɿMSCOCO • M1 ~ M5
ͷධՁ͕͋Δ • ࠓճɺશମͷ࣭ʹؔ͢ΔM1, M2 Λ࠾༻ • BaselinesɿCIDEr, SPICE, METEOR, LEIC(Cui 2018), BERTScore(Zhang 2019) 18 ڭࢣ͋ΓͷධՁࢦඪ
Result • Baseline ͷ LEIC ʹྼΔ͕ɺͦΕͰߴ͍૬ؔΛࣔ͢ 19 M: BERT fine-tuning
ʹ MultiNLI Λ༻ P: ELMo / BERT ͷ౷߹ (Aggregation) ʹ Power Means Λ༻
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 20
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 21 One-to-one ͷڧ͍
alignment Many-to-one ͷऑ͍ alignment WMD Ͱదͳڑ ͕औΕ͍ͯΔ
Discussion • ػց༁ͰਓखධՁͷߴ͍ͷ(good)ͱ͍ͷ(bad)ͷɹ 2ͭʹ͚ɺΛௐࠪ • ൺֱର • Baseline: SentBLEU •
Proposal: MoverScore(WMD+BERT) 22
Discussion • SentBLEU ਓखධՁ͕ྑͯ͘தఔͷՕॴʹଟ͘ • MoverScore ៉ྷʹ2ͭͷۃΛදݱͰ͖͍ͯΔ 23
Conclusion • ੜλεΫͷڭࢣͳ͠ධՁࢦඪΛఏҊ • 4ͭͷੜλεΫͰ Baselines Λ ͑Δ/ഭΔ ݁Ռʹ •
ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 24