Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:MoverScore: Text Generation Evaluating wit...
Search
Taichi Aida
October 14, 2019
Technology
0
550
文献紹介:MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance
Taichi Aida
October 14, 2019
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
意味を表すベクトル表現を用いたテキスト分析
a1da4
0
68
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
240
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
360
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
280
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
400
新入生向けチュートリアル:文献のサーベイv2
a1da4
16
11k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
200
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
320
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
120
Other Decks in Technology
See All in Technology
チーリンについて
hirotomotaguchi
6
2.1k
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.6k
学習データって増やせばいいんですか?
ftakahashi
2
490
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.5k
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
150
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
270
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
110
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
13
11k
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
420
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
130
SREには開発組織全体で向き合う
koh_naga
0
380
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
77
5.2k
Chasing Engaging Ingredients in Design
codingconduct
0
71
sira's awesome portfolio website redesign presentation
elsirapls
0
86
Practical Orchestrator
shlominoach
190
11k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Into the Great Unknown - MozCon
thekraken
40
2.2k
We Are The Robots
honzajavorek
0
110
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Become a Pro
speakerdeck
PRO
31
5.7k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
110
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
จݙհʢʣ MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth
Mover Distance Wei Zhao† , Maxime Peyrard† , Fei Liu‡ , Yang Gao† , Christian M. Meyer† , Steffen Eger† EMNLP2019 Ԭٕज़Պֶେֶ ࣗવݴޠॲཧݚڀࣨɹ ૬ాɹଠҰ
Abstract • ੜͷλεΫʹ͓͍ͯɺؤڧͳධՁईΛௐࠪ • จ຺Λߟྀͨ͠୯ޠࢄදݱ ͱ Word Mover’s Distance ͷΈ߹Θ͕ͤ࠷ྑ͔ͬͨ
• ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 2
Related work • ৭ʑͳධՁख๏ʢ1ʣ • ཁɿROUGE(Lin 2004) • ػց༁ɿBLEU(Papinemi 2002),
RUSE(Shimanaka 2018) • Image CaptioningɿBLEU, CIDEr(Vedantam 2015), SPICE(Anderson 2016) 3 #-&6͔ͳ͍
Related work • ৭ʑͳධՁख๏ʢ2ʣ • ҙຯతྨࣅɿ “BERTScore”(Zhang 2019) • ༁ɿڭࢣ͋Γɾڭࢣͳ͠
BERT ࢄදݱ(Mathur 2019) • ཁɺΤοηΠ࠾ɿELMo + Sentence Mover’s Simirality(Clark 2019) 4 จ຺Λߟྀͨ͠ࢄදݱ $POUFYUVBMJ[FESFQSFTFOUBUJPO Λ༻͍Δख๏͕૿͖͑ͯͨ ࣮ݧͷ#BTFMJOFʹग़͖ͯ·͢
Method • ༷ʑͳੜλεΫΛධՁͰ͖Δࢦඪ(MoverScore)Λௐࠪ • ੜจͱࢀরจͷྨࣅʢʁʣΛଌΔ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ग़ྗจͱࢀরจͷҙຯతڑɿWord
Mover's Distance 5
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 6 /-* 1BSBQISBTJOH #&35 &-.P #&35
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 7 #&35 &-.P
Method • Aggregation ʢ౷߹ํ๏ʣ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ֤୯ޠ֤͔ΒͦΕͧΕҟͳΔϕΫτϧ͕͞ΕΔ •
Power MeansɿฏۉΛऔΓ ( )ɺconcat • Routing Mechanismɿৄ͘͠(Zhang 2018) p p = 1, ± ∞ 8
Method • ग़ྗจͱࢀরจͷҙຯతڑ • Word Mover's Distance (WMD) • Sentence
Mover's Distance (SMD) • ઌ΄ͲͷΈ߹ΘͤΛɺWMD, SMD ͦΕͧΕͰݕূ͢Δ 9
Experiment • Tasks • ػց༁ • ཁ • ରʢλεΫࢤʣ •
Image Captioning 10 ʢࢀরจɺෳͷγεςϜʹΑΔग़ྗจʣͷϖΞ γεςϜͷग़ྗจʹਓखධՁ͕͞Ε͍ͯΔ ʲධՁࢦඪɺMoverScore ͰΔ͜ͱʳ ɾγεςϜͷग़ྗจΛධՁ ɾਓखධՁͱͷ૬ؔΛݟΔ
Experiment • ػց༁ • DatasetɿWMT2017 • ࢀՃγεςϜͷग़ྗจʹɺ࠷Ͱ15ਓͷਓखධՁ • BaselinesɿSentBLEU, METEOR++,
RUSE, BERTScore(Zhang 2019) 11
Result • WMD+BERT+MNLI+PMeans ͕ Baseline Λ্ճΔ 12
Result • Sentence Representation Ͱใ͕ࣦΘΕΔʁ 13
Experiment • ཁ • DatasetɿTAC-2008, TAC-2009 • Responsivenessɿ༰ʴจ๏తͳ࣭ • Pyramidɿࢀরจʹؚ·ΕΔॏཁͳ༰͕ͲΕ͚ͩଟ͘Χόʔ͞
Ε͍ͯΔ͔ • BaselinesɿROUGE-1, ROUGE-2, (Peyrard 2017), BERTScore(Zhang 2019) S3 best 14 ڭࢣ͋ΓͷධՁࢦඪ
Result • WMD+BERT+MNLI+PMeans Ͱ Baselines Λ্ճΔ 15
Experiment • ରʢλεΫࢤʣ • DatasetɿBAGEL, SFHOTEL • Informativeness (Inf)ɿఏڙ͢Δใྔ •
Naturalness (Nat)ɿਓͷԠͷۙ͞ • Quality (Qual)ɿྲྀெੑɾจ๏ • BaselinesɿBLEU, METEOR, BERTScore(Zhang 2019) 16
Result • શମతʹ૬͕͍͕ؔɺఏҊख๏ͦͷதͰߴ͍ํ 17
Experiment • Image Captioning • DatasetɿMSCOCO • M1 ~ M5
ͷධՁ͕͋Δ • ࠓճɺશମͷ࣭ʹؔ͢ΔM1, M2 Λ࠾༻ • BaselinesɿCIDEr, SPICE, METEOR, LEIC(Cui 2018), BERTScore(Zhang 2019) 18 ڭࢣ͋ΓͷධՁࢦඪ
Result • Baseline ͷ LEIC ʹྼΔ͕ɺͦΕͰߴ͍૬ؔΛࣔ͢ 19 M: BERT fine-tuning
ʹ MultiNLI Λ༻ P: ELMo / BERT ͷ౷߹ (Aggregation) ʹ Power Means Λ༻
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 20
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 21 One-to-one ͷڧ͍
alignment Many-to-one ͷऑ͍ alignment WMD Ͱదͳڑ ͕औΕ͍ͯΔ
Discussion • ػց༁ͰਓखධՁͷߴ͍ͷ(good)ͱ͍ͷ(bad)ͷɹ 2ͭʹ͚ɺΛௐࠪ • ൺֱର • Baseline: SentBLEU •
Proposal: MoverScore(WMD+BERT) 22
Discussion • SentBLEU ਓखධՁ͕ྑͯ͘தఔͷՕॴʹଟ͘ • MoverScore ៉ྷʹ2ͭͷۃΛදݱͰ͖͍ͯΔ 23
Conclusion • ੜλεΫͷڭࢣͳ͠ධՁࢦඪΛఏҊ • 4ͭͷੜλεΫͰ Baselines Λ ͑Δ/ഭΔ ݁Ռʹ •
ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 24