Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:MoverScore: Text Generation Evaluating wit...
Search
Taichi Aida
October 14, 2019
Technology
0
540
文献紹介:MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance
Taichi Aida
October 14, 2019
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
意味を表すベクトル表現を用いたテキスト分析
a1da4
0
45
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
230
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
340
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
260
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
370
新入生向けチュートリアル:文献のサーベイv2
a1da4
15
11k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
190
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
300
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
110
Other Decks in Technology
See All in Technology
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
230
現場の壁を乗り越えて、 「計装注入」が拓く オブザーバビリティ / Beyond the Field Barriers: Instrumentation Injection and the Future of Observability
aoto
PRO
1
900
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
420
仕様駆動開発を実現する上流工程におけるAIエージェント活用
sergicalsix
10
5.4k
2025/10/27 JJUGナイトセミナー WildFlyとQuarkusの 始め方
megascus
0
110
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
680
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
450
[AWS 秋のオブザーバビリティ祭り 2025 〜最新アップデートと生成 AI × オブザーバビリティ〜] Amazon Bedrock AgentCore で実現!お手軽 AI エージェントオブザーバビリティ
0nihajim
1
190
設計に疎いエンジニアでも始めやすいアーキテクチャドキュメント
phaya72
26
17k
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
630
プロファイルとAIエージェントによる効率的なデバッグ / Effective debugging with profiler and AI assistant
ymotongpoo
1
810
Featured
See All Featured
Code Review Best Practice
trishagee
72
19k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Side Projects
sachag
455
43k
BBQ
matthewcrist
89
9.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
Rails Girls Zürich Keynote
gr2m
95
14k
Site-Speed That Sticks
csswizardry
13
940
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Fireside Chat
paigeccino
41
3.7k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Transcript
จݙհʢʣ MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth
Mover Distance Wei Zhao† , Maxime Peyrard† , Fei Liu‡ , Yang Gao† , Christian M. Meyer† , Steffen Eger† EMNLP2019 Ԭٕज़Պֶେֶ ࣗવݴޠॲཧݚڀࣨɹ ૬ాɹଠҰ
Abstract • ੜͷλεΫʹ͓͍ͯɺؤڧͳධՁईΛௐࠪ • จ຺Λߟྀͨ͠୯ޠࢄදݱ ͱ Word Mover’s Distance ͷΈ߹Θ͕ͤ࠷ྑ͔ͬͨ
• ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 2
Related work • ৭ʑͳධՁख๏ʢ1ʣ • ཁɿROUGE(Lin 2004) • ػց༁ɿBLEU(Papinemi 2002),
RUSE(Shimanaka 2018) • Image CaptioningɿBLEU, CIDEr(Vedantam 2015), SPICE(Anderson 2016) 3 #-&6͔ͳ͍
Related work • ৭ʑͳධՁख๏ʢ2ʣ • ҙຯతྨࣅɿ “BERTScore”(Zhang 2019) • ༁ɿڭࢣ͋Γɾڭࢣͳ͠
BERT ࢄදݱ(Mathur 2019) • ཁɺΤοηΠ࠾ɿELMo + Sentence Mover’s Simirality(Clark 2019) 4 จ຺Λߟྀͨ͠ࢄදݱ $POUFYUVBMJ[FESFQSFTFOUBUJPO Λ༻͍Δख๏͕૿͖͑ͯͨ ࣮ݧͷ#BTFMJOFʹग़͖ͯ·͢
Method • ༷ʑͳੜλεΫΛධՁͰ͖Δࢦඪ(MoverScore)Λௐࠪ • ੜจͱࢀরจͷྨࣅʢʁʣΛଌΔ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ग़ྗจͱࢀরจͷҙຯతڑɿWord
Mover's Distance 5
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 6 /-* 1BSBQISBTJOH #&35 &-.P #&35
Method • MoverScore Variations • Granularityɿn-gram (n=1, 2, size-of-sentence) •
Embeddingɿword2vec, BERT, ELMo • Fine-tuningɿMultiNLI, QANLI, QQP • Aggregationɿpower means, routing mechanism 7 #&35 &-.P
Method • Aggregation ʢ౷߹ํ๏ʣ • จ຺Λߟྀͨ͠ࢄදݱɿBERT, ELMo • ֤୯ޠ֤͔ΒͦΕͧΕҟͳΔϕΫτϧ͕͞ΕΔ •
Power MeansɿฏۉΛऔΓ ( )ɺconcat • Routing Mechanismɿৄ͘͠(Zhang 2018) p p = 1, ± ∞ 8
Method • ग़ྗจͱࢀরจͷҙຯతڑ • Word Mover's Distance (WMD) • Sentence
Mover's Distance (SMD) • ઌ΄ͲͷΈ߹ΘͤΛɺWMD, SMD ͦΕͧΕͰݕূ͢Δ 9
Experiment • Tasks • ػց༁ • ཁ • ରʢλεΫࢤʣ •
Image Captioning 10 ʢࢀরจɺෳͷγεςϜʹΑΔग़ྗจʣͷϖΞ γεςϜͷग़ྗจʹਓखධՁ͕͞Ε͍ͯΔ ʲධՁࢦඪɺMoverScore ͰΔ͜ͱʳ ɾγεςϜͷग़ྗจΛධՁ ɾਓखධՁͱͷ૬ؔΛݟΔ
Experiment • ػց༁ • DatasetɿWMT2017 • ࢀՃγεςϜͷग़ྗจʹɺ࠷Ͱ15ਓͷਓखධՁ • BaselinesɿSentBLEU, METEOR++,
RUSE, BERTScore(Zhang 2019) 11
Result • WMD+BERT+MNLI+PMeans ͕ Baseline Λ্ճΔ 12
Result • Sentence Representation Ͱใ͕ࣦΘΕΔʁ 13
Experiment • ཁ • DatasetɿTAC-2008, TAC-2009 • Responsivenessɿ༰ʴจ๏తͳ࣭ • Pyramidɿࢀরจʹؚ·ΕΔॏཁͳ༰͕ͲΕ͚ͩଟ͘Χόʔ͞
Ε͍ͯΔ͔ • BaselinesɿROUGE-1, ROUGE-2, (Peyrard 2017), BERTScore(Zhang 2019) S3 best 14 ڭࢣ͋ΓͷධՁࢦඪ
Result • WMD+BERT+MNLI+PMeans Ͱ Baselines Λ্ճΔ 15
Experiment • ରʢλεΫࢤʣ • DatasetɿBAGEL, SFHOTEL • Informativeness (Inf)ɿఏڙ͢Δใྔ •
Naturalness (Nat)ɿਓͷԠͷۙ͞ • Quality (Qual)ɿྲྀெੑɾจ๏ • BaselinesɿBLEU, METEOR, BERTScore(Zhang 2019) 16
Result • શମతʹ૬͕͍͕ؔɺఏҊख๏ͦͷதͰߴ͍ํ 17
Experiment • Image Captioning • DatasetɿMSCOCO • M1 ~ M5
ͷධՁ͕͋Δ • ࠓճɺશମͷ࣭ʹؔ͢ΔM1, M2 Λ࠾༻ • BaselinesɿCIDEr, SPICE, METEOR, LEIC(Cui 2018), BERTScore(Zhang 2019) 18 ڭࢣ͋ΓͷධՁࢦඪ
Result • Baseline ͷ LEIC ʹྼΔ͕ɺͦΕͰߴ͍૬ؔΛࣔ͢ 19 M: BERT fine-tuning
ʹ MultiNLI Λ༻ P: ELMo / BERT ͷ౷߹ (Aggregation) ʹ Power Means Λ༻
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 20
Discussion • ࣮ݧͷ Baseline ͱͯ͠ग़͖ͯͨ BERTScore ͱͷൺֱ 21 One-to-one ͷڧ͍
alignment Many-to-one ͷऑ͍ alignment WMD Ͱదͳڑ ͕औΕ͍ͯΔ
Discussion • ػց༁ͰਓखධՁͷߴ͍ͷ(good)ͱ͍ͷ(bad)ͷɹ 2ͭʹ͚ɺΛௐࠪ • ൺֱର • Baseline: SentBLEU •
Proposal: MoverScore(WMD+BERT) 22
Discussion • SentBLEU ਓखධՁ͕ྑͯ͘தఔͷՕॴʹଟ͘ • MoverScore ៉ྷʹ2ͭͷۃΛදݱͰ͖͍ͯΔ 23
Conclusion • ੜλεΫͷڭࢣͳ͠ධՁࢦඪΛఏҊ • 4ͭͷੜλεΫͰ Baselines Λ ͑Δ/ഭΔ ݁Ռʹ •
ιʔείʔυΛެ։ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ https://github.com/AIPHES/emnlp19-moverscore 24