Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2023年度秋学期 統計学 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布 (2...
Search
Akira Asano
PRO
December 10, 2023
Education
1
160
2023年度秋学期 統計学 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布 (2023. 12. 19)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2023a/STAT/
Akira Asano
PRO
December 10, 2023
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 統計学 第15回 分布についての仮説を検証する - 仮説検定(2) (2025. 1. 15)
akiraasano
PRO
0
67
2024年度秋学期 統計学 第14回 分布についての仮説を検証する - 仮説検定(1) (2025. 1. 8)
akiraasano
PRO
0
71
2024年度秋学期 統計学 第13回 不確かな測定の不確かさを測る - 不偏分散とt分布 (2024. 12. 18)
akiraasano
PRO
0
92
2024年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2024. 12. 13)
akiraasano
PRO
0
35
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
110
2024年度秋学期 統計学 第11回 分布の「型」を考える - 確率分布モデルと正規分布 (2024. 12. 4)
akiraasano
PRO
0
100
2024年度秋学期 画像情報処理 第10回 Radon変換と投影切断面定理 (2024. 12. 6)
akiraasano
PRO
0
39
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
34
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
43
Other Decks in Education
See All in Education
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
200
Zero to Hero
takesection
0
140
BrightonSEO, San Diego, CA 2024
mchowning
0
120
Informasi Program Coding Camp 2025 powered by DBS Foundation
codingcamp2025
0
150
Logistique et supply chain : application au e-commerce
martine
0
120
Ch2_-_Partie_2.pdf
bernhardsvt
0
120
Sähköiset kyselyt, kokeet ja arviointi
matleenalaakso
1
18k
自己紹介 / who-am-i
yasulab
PRO
2
4.4k
1106
cbtlibrary
0
440
Adobe Express
matleenalaakso
1
7.6k
Image compression
hachama
0
350
勉強したらどうなるの?
mineo_matsuya
10
6.9k
Featured
See All Featured
Code Review Best Practice
trishagee
65
17k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Why Our Code Smells
bkeepers
PRO
335
57k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Speed Design
sergeychernyshev
25
750
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.5k
Scaling GitHub
holman
459
140k
Six Lessons from altMBA
skipperchong
27
3.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Transcript
浅野 晃 関西大学総合情報学部 2023年度秋学期 統計学 不確かな測定の不確かさを測る ― 不偏分散とt分布 第13回
34 2 ちょっと(ほんのちょっと) 前回までの復習
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 3 例題 標本 をとりだす サイズ X1
, X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 区間推定の考え方 4 数値をいくつか抽出して標本平均 標本平均にすることで ばらつきが小さくなる 仮に,何度も抽出したとすると 母平均(実際にはわからない)
のまわりにばらついている 標本平均の期待値 =母平均 標本平均の分散 =母分散÷標本サイズ X X X X ★ ★ ★ ★
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 区間推定の考え方 5 標本平均の左右に区間をつける 区間は母平均を 母平均 どの回の区間が 母平均を含むか・含まないかは
わからないが 確率95%で母平均を含むように 区間の幅を設定できる X X X X 含む 含む 含まない 含む (実際にはわからない) 標本平均はばらついているが,前後に区間をつければ,母平均はたいてい その区間に入っているようにできる
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 信頼区間 6 区間は母平均を 母平均 X X X
X 含むだろう 含む 含ま ない 含む (実際にはわからない) 95%という大きな確率で 母平均を含むように設定した区間だから, その1回でも含むと信じる 母平均の [信頼係数]95%の [信頼区間] という ([95%信頼区間])
34 7 不偏分散💡💡
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 8 例題 標本 をとりだす サイズ X1
, X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 それなのに,母分散がわかるはずがない 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 母分散は,ふつうはわからない 9 それなのに,母分散がわかるはずがない 母集団全体は調べていないし,母平均もわからない (わからないから,いま推定しようとしている) 母分散の「代用品」を,標本を使って計算できないか。
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 分散=(偏差)2の平均 (データの各数値)ー(データの平均)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 ,
... X1 Xn
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 ,
... X1 Xn データの平均:
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 ,
... X1 Xn データの平均: 本当は母平均だが,
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 10 標本を使って分散を計算する。 分散=(偏差)2の平均 (データの各数値)ー(データの平均) データ: 標本 ,
... X1 Xn わからないので標本平均 で代用 ¯ X データの平均: 本当は母平均だが,
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本を使った分散 S2 = 1 n
(X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本を使った分散 S2 = 1 n
(X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1
n (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1
n (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 分散=(偏差)2の平均 だから当然だけど…
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本を使って分散を計算 11 標本サイズで割る 標本を使った分散 S2 = 1
n (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 分散=(偏差)2の平均 だから当然だけど… 本当にこれでいいの?
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 X1
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 X1 X2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 X1 X2 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 X1 X2 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 X1 母平均とのへだたり(偏差) X2 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X2 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X1 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 母平均 母平均はわからないから, が 偏った標本かどうかはわからないが, X1 , X2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 12 標本サイズ とする n = 2
標本は X1 , X2 ¯ X X1 X2 母平均とのへだたり(偏差) X1 X2 ¯ X 標本平均とのへだたり X2 X1 ¯ X 標本平均とのへだたりのほう がたいてい小さい 母平均 母平均はわからないから, が 偏った標本かどうかはわからないが, X1 , X2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は
かわらない ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は
かわらない ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は
かわらない ¯ X ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本平均を用いた偏差 13 別の説明 母集団の度数分布 これなら 「標本平均との隔たり」と 「母平均との隔たり」は
かわらない ¯ X こんなふうに偏っていると 「標本平均との隔たり」 のほうが小さい ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 14 母平均との隔たりよりも 標本平均との隔たりのほうが たいてい小さい 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 14 母平均との隔たりよりも 標本平均との隔たりのほうが たいてい小さい 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる
では,計算のときに少し大きめにしておけば?
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n
− 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n
− 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n
− 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n
− 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る これを不偏分散(不偏標本分散)といい, 母分散の代用に用いる
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 不偏分散 15 計算のときに少し大きめにする s2 = 1 n
− 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 + · · · + (Xn − ¯ X)2 (標本サイズ - 1)で割る これを不偏分散(不偏標本分散)といい, 母分散の代用に用いる 「不偏」とは?
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる 母分散と一致するわけではないが 母分散より大きくも小さくも平等にはずれる
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 「不偏」とは? 16 計算のときに少し大きめにすると? 標本平均との隔たりを使って分散を計算すると, 母分散よりもたいてい小さめになる 母分散と一致するわけではないが 母分散より大きくも小さくも平等にはずれる
「不偏」とは「えこひいきしない」こと
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 標本サイズ=2のときに,式で書いてみると 17 標本サイズ=2のとき,標本を ,標本平均を とすると 不偏分散 は
X1 , X2 ¯ X s2 s2 = 1 2 − 1 (X1 − ¯ X)2 + (X2 − ¯ X)2 {}内は,2つの「へだたり」の2乗の和? を代入すると ¯ X = X1 + X2 2 s2 = 1 2 − 1 (X1 − X1 + X2 2 )2 + (X2 − X1 + X2 2 )2 = 1 2 − 1 X1 − X2 2 2 + X2 − X1 2 2 = 1 2 − 1 (X1 − X2)2 2 「へだたり」は,ひとつしかない だから,2で割らずに1で割る
34 18 不偏分散を用いた区間推定💡💡
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 19 前回の例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この試験の受験者全体の標準偏差が5点であるとわかっている
とき,受験者全体の平均点の95%信頼区間を求めてください。
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 20 例題 標本 をとりだす サイズ X1
, X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわかっているものとする σ2 (説明の都合です) 標本平均 ¯ X
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 21 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2)
標本平均は,やはり正規分布にしたがうが, 分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2]
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2)
標本平均は,やはり正規分布にしたがうが,分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2)
標本平均は,やはり正規分布にしたがうが,分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2)
標本平均は,やはり正規分布にしたがうが,分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 22 考え方 標本は,母集団分布と同じ確率分布にしたがう 正規分布 N(μ, σ2)
標本平均は,やはり正規分布にしたがうが,分散が になる 1/n 正規分布 N(μ, σ2/n) [性質2] 正規分布の[性質1]により ¯ X Z = ¯ X − µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n 不偏分散
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 本当は,母分散はわからない 23 Z = ¯ X −
µ σ2/n は標準正規分布にしたがう N(0,1) 本当は母分散はわからない 不偏分散で代用する t = ¯ X − µ s2/n 不偏分散 は何分布にしたがう? t
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t = ¯ X
− µ s2/n t統計量
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t = ¯ X
− µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t
= ¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t
= ¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t
= ¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布 24 は t(n − 1) t
= ¯ X − µ s2/n 自由度 の t分布にしたがう (n − 1) t統計量 (「スチューデントのt分布」という) 発見者ウィリアム・ゴセットのペンネーム
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点
の95%信頼区間を求めてください。
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点
の95%信頼区間を求めてください。
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布(母分散不明)の場合の区間推定 25 テキストの例題 ある試験の点数の分布は正規分布であるとします。 この試験の受験者から,10人からなる標本を無作為抽出して, この人たちの点数を平均したところ50点でした。 この10人の不偏分散が52点であるとき,受験者全体の平均点
の95%信頼区間を求めてください。 前回は 「受験者全体の標準偏差が5点であるとわかっている」
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 26 例題 標本 をとりだす サイズ X1
, X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわか σ2 標本平均 ¯ X らないので,
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 正規分布の場合の区間推定 26 例題 標本 をとりだす サイズ X1
, X2 , …, Xn n 母集団 (受験者全体) 母平均 μ 母平均 の95%信頼区間が知りたい μ 正規分布 と仮定する 母分散 がわか σ2 標本平均 ¯ X らないので, 不偏分散 で代用 s2
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 は自由度 の t分布にしたがう
(n − 1) の 確率密度関数 t(n − 1) t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 は自由度 の t分布にしたがう
(n − 1) の 確率密度関数 t(n − 1) t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の
t分布にしたがう (n − 1) の 確率密度関数 t(n − 1) が t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の
t分布にしたがう (n − 1) の 確率密度関数 t(n − 1) が 面積=95% t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 27 この区間に入っている確率=95%とすると は自由度 の
t分布にしたがう (n − 1) の 確率密度関数 t(n − 1) が 面積=95% 境界の値はいくら? t = ¯ X − µ s2/n t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95%
面積=2.5% (左右で5%)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95%
面積=2.5% (左右で5%) 境界の値は自由度によってちがうので
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95%
面積=2.5% (左右で5%) 境界の値は自由度によってちがうので t0.025 (n − 1) としておく
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t 0 t分布を用いた区間推定 28 面積=95%
面積=2.5% (左右で5%) 境界の値は自由度によってちがうので t0.025 (n − 1) としておく [上側2.5%点]
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95%
t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95%
t = ¯ X − µ s2/n t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95%
t = ¯ X − µ s2/n t0.025 (n − 1) t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布を用いた区間推定 29 この区間に入っている確率=95% が 面積=95%
t = ¯ X − µ s2/n t0.025 (n − 1) −t0.025 (n − 1) t(n − 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 が と の間に入っている確率が95% −t0.025 (n
− 1) t0.025 (n − 1) t = ¯ X − µ s2/n
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025
(n − 1) t0.025 (n − 1) t = ¯ X − µ s2/n
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025
(n − 1) t0.025 (n − 1) t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025
(n − 1) t0.025 (n − 1) の式に直すと μ t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 30 式で書くと が と の間に入っている確率が95% −t0.025
(n − 1) t0.025 (n − 1) の式に直すと μ t = ¯ X − µ s2/n P −t0.025(n − 1) ¯ X − µ s2/n t0.025(n − 1) = 0.95 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 P ¯ X − t0.025(n
− 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ 例題では P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ 例題では 標本平均=50 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ 例題では 標本平均=50 不偏分散=25 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 31 の95% 信頼区間の下限 μ の95% 信頼区間の上限
μ 例題では 標本平均=50 不偏分散=25 標本サイズ=10 上側2.5%点 は? t0.025 (n − 1) P ¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n
− 1)
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n
− 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% t0.025 (n
− 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 t0.025
(n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では
n − 1 = 9 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では
n − 1 = 9 0.025 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t 0 t分布表 32 面積=2.5% パーセントの値 例題では
n − 1 = 9 0.025 t0.025 (9) = 2.262 t0.025 (n − 1) 0.40 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 1 0.3249 0.7265 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 2 0.2887 0.6172 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.2767 0.5844 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.2707 0.5686 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.2672 0.5594 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 6 0.2648 0.5534 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 7 0.2632 0.5491 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.2619 0.5459 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.2610 0.5435 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 自由度
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 P ¯ X − t0.025(n
− 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では P ¯ X −
t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 P ¯ X
− t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 P ¯
X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P
¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P
¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P
¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95 t0.025 (10 − 1) = 2.262
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 t分布を用いた区間推定 33 例題では 標本平均=50 不偏分散=25 標本サイズ=10 P
¯ X − t0.025(n − 1) s2 n µ ¯ X + t0.025(n − 1) s2 n = 0.95 t0.025 (10 − 1) = 2.262 計算すると,例題の答は 「46.4以上53.6以下」( [46.4, 53.6] ) の95% 信頼区間の下限 μ の95% 信頼区間の上限 μ
34 2023年度秋学期 統計学 / 関西大学総合情報学部 浅野 晃 前回の例題と比較 34 不偏分散は,母分散の推定量なので,不確か どちらも 標本平均=50 不偏分散=25 のとき 標本サイズ=10
母分散=25 のとき 母平均の95%信頼区間は [46.9, 53.1] [46.4, 53.6] →信頼区間が広い