Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度春学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2...
Search
Akira Asano
PRO
April 03, 2024
Education
0
86
2024年度春学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2024. 4. 11)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024s/AMA/
Akira Asano
PRO
April 03, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
身近なデータサイエンス(2024. 7. 12 夙川高等学校出張講義)
akiraasano
PRO
1
23
2024年度春学期 統計学 第15回 分布についての仮説を検証する ― 仮説検定(2) (2024. 7. 18)
akiraasano
PRO
0
110
2024年度春学期 応用数学(解析)第15回 ルベーグ積分 (2024. 7. 18)
akiraasano
PRO
0
26
2024年度春学期 統計学 第14回 分布についての仮説を検証する ― 仮説検定(1) (2024. 7. 11)
akiraasano
PRO
0
110
2024年度春学期 応用数学(解析)第14回 ルベーグ測度と完全加法性 (2024. 7. 11)
akiraasano
PRO
0
36
2024年度春学期 応用数学(解析)第13回 孤立特異点と留数 (2024. 7. 4)
akiraasano
PRO
0
45
2024年度春学期 統計学 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布 (2024. 7. 4)
akiraasano
PRO
0
130
2024年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2024. 6. 27)
akiraasano
PRO
1
150
2024年度春学期 応用数学(解析)第12回 複素関数・正則関数 (2024. 6. 27)
akiraasano
PRO
0
57
Other Decks in Education
See All in Education
Qualtricsで相互作用実験する「SMARTRIQS」入門編
kscscr
0
240
電子計算機のイロハ
kosugitti
1
1.5k
PSYC-560 R and R Studio Setup
jdbedics
0
490
LINE ミニアプリ開発のメリットとキャッチアップ方法
junghyeonjae
0
560
いまからでも遅くない!サイバーセキュリティ人材育成
mnori0211
1
1.7k
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
signer
PRO
1
1.5k
week13@tcue2024
nonxxxizm
0
540
AWS認定試験 DEA受験記
nnydtmg
1
380
Adobe Express
matleenalaakso
1
7.3k
20240810_ワンオペ社内勉強会のノウハウ
ponponmikankan
2
780
横浜国立大学大学院 国際社会科学府 経営学専攻博士課程前期(社会人専修コース)_在校生体験談
miki_small_pin
0
500
Цифровые финансы - магистерская программа Финэка МГИМО 2024 г.
niellony
0
650
Featured
See All Featured
Building Adaptive Systems
keathley
36
2.1k
KATA
mclloyd
27
13k
How to name files
jennybc
75
98k
The Mythical Team-Month
searls
218
43k
How to train your dragon (web standard)
notwaldorf
85
5.6k
Building Flexible Design Systems
yeseniaperezcruz
325
37k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
38
9.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Design by the Numbers
sachag
277
19k
Imperfection Machines: The Place of Print at Facebook
scottboms
263
13k
10 Git Anti Patterns You Should be Aware of
lemiorhan
653
58k
The Illustrated Children's Guide to Kubernetes
chrisshort
47
48k
Transcript
関西大学総合情報学部 浅野 晃 応用数学(解析) 2024年度春学期 第1回 イントロダクション ー ちょっとかっこいい数学を
数学を学ぶこと🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数学を学ぶこととは 3 「問題を解くこと」ではありません 大事なのは「わかる💡💡」こと。 数学の考え方や思想を理解しましょう。 試験では問題を解いてはもらいますが…
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数学の特徴は 4 抽象化・一般化 微分や積分は,量の変化を調べる。 ー 乗り物の速度🚅🚅 ー
放射性元素の崩壊☢ ー 気候の変化🌤🌤 何にでも使えます
「無限」の理解🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限と数学 6 微分・積分は「無限」でできている 微分は「無限に短い時間での変化」 積分は「図形を無限に細かく分けて面積を求める」
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分とは 7 a → 0 幅を無限に狭く f(x)
x 0 a この線の傾きは これが微分 f(a) − f(0) a − 0 f(x) x 0a この線の傾きは lim a→0 f(a) − f(0) a − 0 = df(x) dx x=0 = f′(x)
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分とは 8 この面積を 求めたい Δx → 0
区切りを無限に細かく f(x) x n−1 k=0 f(k∆x)∆x f(x) x 0 Δx 2Δx nΔx 幅が Δx の 長方形で近似 高さ f(2Δx) 0 a a 0 f(x)dx これが積分
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス A B A地点からB地点に行くには,
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス A B A地点からB地点に行くには, 無限個の2分点を通らなければならないから,永遠にたどり着かない?
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス 数学が,これをどうやって克服してきたかをお話しします。 A B A地点からB地点に行くには,
無限個の2分点を通らなければならないから,永遠にたどり着かない?
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス 数学が,これをどうやって克服してきたかをお話しします。 A B A地点からB地点に行くには,
無限個の2分点を通らなければならないから,永遠にたどり着かない? (2分点は無限にあるが, 2分点間の距離の合計は「収束」する)
基本的な微分方程式🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式とは 11 微分方程式は,解が「関数」で,その微分が含まれる方程式 ふつうの方程式は,解は「数」 x が t
の関数(つまりx(t))のとき, x2 − 5x + 3 = 0 x′ = x x′′ − 5x′ + 6x = 0 関数は「量の変化」 微分方程式は「変化の条件」 微分方程式を解くと,「どう変化するか📈📈」がわかる
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 基本的な微分方程式 12 微分方程式は, 特定のパターンのものしか解けない😵😵 基本的なパターンをいくつか紹介します。
微分方程式に関する話題🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式の応用例 14 原子が崩壊して,数が半分になるまでの時間(半減期)は, いつの時点でも同じ 振動は,運動と反対方向に復元力が働いて起きる 強制力を加えると,振動が無限に大きくなることがある(共鳴) 放射性原子核の崩壊
☢ 振動と共鳴 🔊🔊
「その先の解析学」への導入🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数とは 16 複素数とは 複素数の関数で,値も複素数 x2 = −1
の解は? i = √ −1 として ±i ・三角関数を指数関数で表せる ・実関数で解けない積分が解ける 複素関数とは これを使うと,
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 測度論とは 17 「測る」とは何か? 測ることのできる集合とは何か? 長さ・面積・体積・質量など,いろいろな測り方があるけれど これらを一般的に「測度」という
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 18 この面積は p q f(x) a
分 q p f(x)dx グ 部分 から a a f(x)dx を抜いたもの 幅が0のとき,積分は0だから p q f(x) 全ての有理数の位置の線を 全部抜いても 本当に面積は変わらないか? 線を1本抜く 面積は変わらない
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 結論だけいえば 19 p q f(x) 全ての有理数の位置の線を
全部抜いても 本当に面積は変わらないか? 変わらない😲😲 「有理数全体の集合」の測度は0
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 結論だけいえば 19 p q f(x) 全ての有理数の位置の線を
全部抜いても 本当に面積は変わらないか? 変わらない😲😲 「有理数全体の集合」の測度は0 パスタ🍝🍝が「アルデンテ」のとき 芯は「存在する」が,測度は0
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 もう一度いいますが 20 ちょっと,かっこいい数学を。