$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度春学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2...
Search
Akira Asano
PRO
April 03, 2024
Education
0
160
2024年度春学期 応用数学(解析)第1回 イントロダクションーちょっとかっこいい数学を (2024. 4. 11)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024s/AMA/
Akira Asano
PRO
April 03, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(2) 孤立特異点と留数 (2025. 12. 19)
akiraasano
PRO
0
16
2025年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数 (2025. 12. 12)
akiraasano
PRO
0
17
2025年度秋学期 応用数学(解析) 第11回 振動と微分方程式 (2025. 12. 5)
akiraasano
PRO
0
24
2025年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2025. 12. 5)
akiraasano
PRO
0
25
2025年度秋学期 画像情報処理 第10回 離散フーリエ変換と離散コサイン変換 (2025. 11. 28)
akiraasano
PRO
0
31
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
akiraasano
PRO
0
26
2025年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2025. 11. 21)
akiraasano
PRO
0
19
2025年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2025. 11. 14)
akiraasano
PRO
0
25
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(2) (2025. 11. 14)
akiraasano
PRO
0
25
Other Decks in Education
See All in Education
Презентация "Знаю Россию"
spilsart
0
380
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
670
MySmartSTEAM 2526
cbtlibrary
0
170
AIは若者の成長機会を奪うのか?
frievea
0
140
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
150
Adobe Express
matleenalaakso
1
8.1k
the difficulty into words
ukky86
0
330
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
540
XML and Related Technologies - Lecture 7 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
多様なメンター、多様な基準
yasulab
5
19k
相互コミュニケーションの難しさ
masakiokuda
0
320
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
140
Featured
See All Featured
Thoughts on Productivity
jonyablonski
73
5k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
A Soul's Torment
seathinner
1
2k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
A Tale of Four Properties
chriscoyier
162
23k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
34
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
250
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Mind Mapping
helmedeiros
PRO
0
39
The Cult of Friendly URLs
andyhume
79
6.7k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Context Engineering - Making Every Token Count
addyosmani
9
550
Transcript
関西大学総合情報学部 浅野 晃 応用数学(解析) 2024年度春学期 第1回 イントロダクション ー ちょっとかっこいい数学を
数学を学ぶこと🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数学を学ぶこととは 3 「問題を解くこと」ではありません 大事なのは「わかる💡💡」こと。 数学の考え方や思想を理解しましょう。 試験では問題を解いてはもらいますが…
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 数学の特徴は 4 抽象化・一般化 微分や積分は,量の変化を調べる。 ー 乗り物の速度🚅🚅 ー
放射性元素の崩壊☢ ー 気候の変化🌤🌤 何にでも使えます
「無限」の理解🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限と数学 6 微分・積分は「無限」でできている 微分は「無限に短い時間での変化」 積分は「図形を無限に細かく分けて面積を求める」
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分とは 7 a → 0 幅を無限に狭く f(x)
x 0 a この線の傾きは これが微分 f(a) − f(0) a − 0 f(x) x 0a この線の傾きは lim a→0 f(a) − f(0) a − 0 = df(x) dx x=0 = f′(x)
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分とは 8 この面積を 求めたい Δx → 0
区切りを無限に細かく f(x) x n−1 k=0 f(k∆x)∆x f(x) x 0 Δx 2Δx nΔx 幅が Δx の 長方形で近似 高さ f(2Δx) 0 a a 0 f(x)dx これが積分
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス A B A地点からB地点に行くには,
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス A B A地点からB地点に行くには, 無限個の2分点を通らなければならないから,永遠にたどり着かない?
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス 数学が,これをどうやって克服してきたかをお話しします。 A B A地点からB地点に行くには,
無限個の2分点を通らなければならないから,永遠にたどり着かない?
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 無限とは,「多い」だけではない 9 ゼノンのパラドックス 数学が,これをどうやって克服してきたかをお話しします。 A B A地点からB地点に行くには,
無限個の2分点を通らなければならないから,永遠にたどり着かない? (2分点は無限にあるが, 2分点間の距離の合計は「収束」する)
基本的な微分方程式🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式とは 11 微分方程式は,解が「関数」で,その微分が含まれる方程式 ふつうの方程式は,解は「数」 x が t
の関数(つまりx(t))のとき, x2 − 5x + 3 = 0 x′ = x x′′ − 5x′ + 6x = 0 関数は「量の変化」 微分方程式は「変化の条件」 微分方程式を解くと,「どう変化するか📈📈」がわかる
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 基本的な微分方程式 12 微分方程式は, 特定のパターンのものしか解けない😵😵 基本的なパターンをいくつか紹介します。
微分方程式に関する話題🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式の応用例 14 原子が崩壊して,数が半分になるまでの時間(半減期)は, いつの時点でも同じ 振動は,運動と反対方向に復元力が働いて起きる 強制力を加えると,振動が無限に大きくなることがある(共鳴) 放射性原子核の崩壊
☢ 振動と共鳴 🔊🔊
「その先の解析学」への導入🤔🤔
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数とは 16 複素数とは 複素数の関数で,値も複素数 x2 = −1
の解は? i = √ −1 として ±i ・三角関数を指数関数で表せる ・実関数で解けない積分が解ける 複素関数とは これを使うと,
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 測度論とは 17 「測る」とは何か? 測ることのできる集合とは何か? 長さ・面積・体積・質量など,いろいろな測り方があるけれど これらを一般的に「測度」という
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 積分に対する疑問 18 この面積は p q f(x) a
分 q p f(x)dx グ 部分 から a a f(x)dx を抜いたもの 幅が0のとき,積分は0だから p q f(x) 全ての有理数の位置の線を 全部抜いても 本当に面積は変わらないか? 線を1本抜く 面積は変わらない
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 結論だけいえば 19 p q f(x) 全ての有理数の位置の線を
全部抜いても 本当に面積は変わらないか? 変わらない😲😲 「有理数全体の集合」の測度は0
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 結論だけいえば 19 p q f(x) 全ての有理数の位置の線を
全部抜いても 本当に面積は変わらないか? 変わらない😲😲 「有理数全体の集合」の測度は0 パスタ🍝🍝が「アルデンテ」のとき 芯は「存在する」が,測度は0
20 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 もう一度いいますが 20 ちょっと,かっこいい数学を。